Showing 20 articles starting at article 461
< Previous 20 articles Next 20 articles >
Categories: Mathematics: Puzzles, Space: General
Published Researchers probe how a piece of the moon became a near-Earth asteroid



Two years after the striking discovery that a near-Earth asteroid could be a chunk of the moon, another UArizona research group has found that a rare pathway could have enabled this to happen.
Published LIGO surpasses the quantum limit



Researchers report a significant advance in quantum squeezing, which allows them to measure undulations in space-time across the entire range of gravitational frequencies detected by LIGO.
Published The Moon is 40 million years older than previously thought



By analyzing tiny lunar crystals gathered by Apollo 17 astronauts in 1972, researchers recalculated the age of the Earth's Moon. Although previous assessments estimated the Moon as 4.425 billion years old, the new study discovered it is actually 4.46 billion years old -- 40 million years older than previously thought.
Published NASA's Webb discovers new feature in Jupiter's atmosphere



NASA's James Webb Space Telescope has discovered a new, never-before-seen feature in Jupiter's atmosphere. The high-speed jet stream, which spans more than 3,000 miles (4,800 kilometers) wide, sits over Jupiter's equator above the main cloud decks. The discovery of this jet is giving insights into how the layers of Jupiter's famously turbulent atmosphere interact with each other, and how Webb is uniquely capable of tracking those features.
Published Astronomers detect most distant fast radio burst to date



An international team has spotted a remote blast of cosmic radio waves lasting less than a millisecond. This 'fast radio burst' (FRB) is the most distant ever detected. Its source was pinned down by the European Southern Observatory's (ESO) Very Large Telescope (VLT) in a galaxy so far away that its light took eight billion years to reach us. The FRB is also one of the most energetic ever observed; in a tiny fraction of a second it released the equivalent of our Sun's total emission over 30 years.
Published Black holes could come in 'perfect pairs' in an ever expanding Universe



Researchers have shown it's theoretically possible for black holes to exist in perfectly balanced pairs -- held in equilibrium by a cosmological force -- mimicking a single black hole.
Published Grasping the three-dimensional morphology of kilonovae



An advanced new three-dimensional (3D) computer simulation of the light emitted following a merger of two neutron stars has produced a similar sequence of spectroscopic features to an observed kilonova. '
Published Source of largest ever Mars quake revealed



Scientists have announced the results of an unprecedented collaboration to search for the source of the largest ever seismic event recorded on Mars. The study rules out a meteorite impact, suggesting instead that the quake was the result of enormous tectonic forces within Mars' crust.
Published Signatures of the Space Age: Spacecraft metals left in the wake of humanity's path to the stars



Using tools hitched to the nose cone of their research planes and sampling more than 11 miles above the planet's surface, researchers have discovered significant amounts of metals in aerosols in the atmosphere, likely from increasingly frequent launches and returns of spacecraft and satellites. That mass of metal is changing atmospheric chemistry in ways that may impact Earth's atmosphere and ozone layer.
Published Scientists, philosophers identify nature's missing evolutionary law



A new article describes 'a missing law of nature,' recognizing for the first time an important norm within the natural world's workings. In essence, the new law states that complex natural systems evolve to states of greater patterning, diversity, and complexity. In other words, evolution is not limited to life on Earth, it also occurs in other massively complex systems, from planets and stars to atoms, minerals, and more.
Published NASA's Webb captures an ethereal view of NGC 346



One of the greatest strengths of NASA's James Webb Space Telescope is its ability to give astronomers detailed views of areas where new stars are being born. The latest example, showcased here in a new image from Webb's Mid-Infrared Instrument (MIRI), is NGC 346 -- the brightest and largest star-forming region in the Small Magellanic Cloud.
Published Removal of magnetic spacecraft contamination within extraterrestrial samples easily carried out, researchers say



By demonstrating that spaceflight doesn’t adversely affect the magnetism of moon rocks, researchers underscore the exciting potential of studying the magnetic histories stored in these samples.
Published Researchers capture first-ever afterglow of huge planetary collision in outer space



A chance social media post by an eagle-eyed amateur astronomer sparked the discovery of an explosive collision between two giant planets, which crashed into each other in a distant space system 1,800 light years away from planet Earth.
Published 'Starquakes' could explain mystery signals



Fast radio bursts, or FRBs, are an astronomical mystery, with their exact cause and origins still unconfirmed. These intense bursts of radio energy are invisible to the human eye, but show up brightly on radio telescopes. Previous studies have noted broad similarities between the energy distribution of repeat FRBs, and that of earthquakes and solar flares. However, new research has looked at the time and energy of FRBs and found distinct differences between FRBs and solar flares, but several notable similarities between FRBs and earthquakes. This supports the theory that FRBs are caused by 'starquakes' on the surface of neutron stars. This discovery could help us better understand earthquakes, the behavior of high-density matter and aspects of nuclear physics.
Published Finding explanation for Milky Way's warp



Though scientists have long known through observational data that the Milky Way is warped and its edges are flared like a skirt, no one could explain why. Now, astronomers have performed the first calculations that fully explain this phenomenon, with compelling evidence pointing to the Milky Way's envelopment in an off-kilter halo of dark matter.
Published Stellar fountain of youth with turbulent formation history in the center of our galaxy



An unexpectedly high number of young stars has been identified in the direct vicinity of a supermassive black hole and water ice has been detected at the center of our galaxy.
Published Source of electron acceleration and X-ray aurora of Mercury local chorus waves detected



Observations during two flybys by the Mio spacecraft as part of the BepiColombo International Mercury Exploration Project have revealed that chorus waves occur quite locally in the dawn sector of Mercury. Mercury's magnetic field is about 1% of that of Earth, and it was unclear whether chorus waves would be generated like on Earth. The present study reveals that the chorus waves are the driving source of Mercury's X-ray auroras, whose mechanism was not understood.
Published Astronomers discover first step toward planet formation



Astronomers have gotten very good at spotting the signs of planet formation around stars. But for a complete understanding of planet formation, we also need to study examples where planet formation has not yet started. Looking for something and not finding it can be even more difficult than finding it sometimes, but new detailed observations of the young star DG Taurus show that it has a smooth protoplanetary disk without signs of planet formation. This successful non-detection of planet formation may indicate that DG Taurus is on the eve of planet formation.
Published Pulsars may make dark matter glow



The central question in the ongoing hunt for dark matter is: what is it made of? One possible answer is that dark matter consists of particles known as axions. A team of astrophysicists has now shown that if dark matter consists of axions, it may reveal itself in the form of a subtle additional glow coming from pulsating stars.
Published Scientists discover the highest energy gamma-rays ever from a pulsar



Scientists have detected the highest energy gamma rays ever from a dead star called a pulsar. The energy of these gamma rays clocked in at 20 tera-electronvolts, or about ten trillion times the energy of visible light. This observation is hard to reconcile with the theory of the production of such pulsed gamma rays, as the international team reports.