Showing 20 articles starting at article 241

< Previous 20 articles        Next 20 articles >

Categories: Chemistry: Thermodynamics, Mathematics: Puzzles

Return to the site home page

Chemistry: Thermodynamics Energy: Nuclear
Published

Mitigating corrosion by liquid tin could lead to better cooling in fusion reactors      (via sciencedaily.com) 

Researchers have clarified the chemical compatibility between high temperature liquid metal tin (Sn) and reduced activation ferritic martensitic, a candidate structural material for fusion reactors. This discovery has paved the way for the development of a liquid metal tin divertor, which is an advanced heat-removal component of fusion reactors. A device called a divertor is installed in the fusion reactors to maintain the purity of the plasma. For divertors, there has been demand for liquid metals that can withstand extremely large heat loads from high-temperature plasma.

Chemistry: Thermodynamics Computer Science: Quantum Computers Physics: Quantum Computing
Published

Chaos gives the quantum world a temperature      (via sciencedaily.com) 

Two seemingly different areas of physics are related in subtle ways: Quantum theory and thermodynamics. How can the laws of thermodynamics arise from the laws of quantum physics? This question has now been pursued with computer simulations, which showed that chaos plays a crucial role: Only where chaos prevails do the well-known rules of thermodynamics follow from quantum physics.

Chemistry: Thermodynamics
Published

Gold-based passive heating for eyewear      (via sciencedaily.com) 

Researchers have developed a new transparent gold nanocoating that harnesses sunlight to heat the lenses of glasses, thereby preventing them from fogging in humid conditions. This coating could potentially also be applied to car windshields.

Chemistry: Thermodynamics Energy: Batteries
Published

Flameproofing lithium-ion batteries with salt      (via sciencedaily.com) 

A polymer-based electrolyte makes for batteries that keep working -- and don't catch fire -- when heated to over 140 degrees F.

Computer Science: Virtual Reality (VR) Mathematics: Puzzles
Published

Purchasing loot boxes in video games associated with problem gambling risk, says study      (via sciencedaily.com) 

Gamers who buy 'loot boxes' are up to two times more likely to gamble, shows new research.

Chemistry: Thermodynamics
Published

Team recycles previously unrecyclable plastic      (via sciencedaily.com) 

Researchers have discovered a way to chemically recycle PVC into usable material, finding a way to use the phthalates in the plasticizers -- one of PVC's most noxious components -- as the mediator for the chemical reaction.

Chemistry: Thermodynamics
Published

Researchers introduce an energy-efficient method to enhance thermal conductivity of polymer composites      (via sciencedaily.com) 

Thermally conductive polymer composites consist of fillers oriented in certain directions that form pathways for heat flow. However, conventional methods to control the orientation of these fillers are energy-intensive and require surface modifications that can deteriorate the quality and properties of these materials. Now, researchers have developed an energy-efficient method to control the orientation of the fillers without the need for surface modification, resulting in improvement in thermal conductivity.

Chemistry: Thermodynamics
Published

Engineers use quantum computing to develop transparent window coating that blocks heat, saves energy      (via sciencedaily.com) 

Scientists have devised a transparent coating for windows that could help cool the room, use no energy and preserve the view.

Chemistry: Thermodynamics Energy: Alternative Fuels
Published

Cooling down solar cells, naturally      (via sciencedaily.com) 

Too much sun and too much heat can reduce the efficiency of photovoltaics. A solar farm with optimally spaced panels facing the correct direction could cool itself through convection using the surrounding wind. Researchers explored how to exploit the geometry of solar farms to enhance natural cooling mechanisms.

Chemistry: Thermodynamics
Published

High-performance and compact vibration energy harvester created for self-charging wearable devices      (via sciencedaily.com) 

A research team has developed a microelectromechanical system (MEMS) piezoelectric vibration energy harvester, which is only about 2 cm in diameter with a U-shaped metal vibration amplification component. The device allows for an increase of approximately 90 times in the power generation performance from impulsive vibration. Since the power generation performance can be improved without increasing the device size, the technology is expected to generate power to drive small wearable devices from non-steady vibrations, such as walking motion.

Mathematics: Puzzles
Published

Online gaming enhances career prospects and develops soft skills, finds new study      (via sciencedaily.com) 

Online gaming behavior can encourage gamers to gain a variety of soft skills which could assist them with training to support their career aspirations, according to new research.

Chemistry: Thermodynamics
Published

Research unearths obscure heat transfer behaviors      (via sciencedaily.com) 

Researchers have found that boron arsenide, which has already been viewed as a highly promising material for heat management and advanced electronics, also has a unique property. After reaching an extremely high pressure that is hundreds of times greater than the pressure found at the bottom of the ocean, boron arsenide's thermal conductivity actually begins to decrease. The results suggest that there might be other materials experiencing the same phenomenon under extreme conditions.

Chemistry: Thermodynamics
Published

A life-inspired system dynamically adjusts to its environment      (via sciencedaily.com) 

The system regulates its own temperature in response to environmental disturbances.

Chemistry: Thermodynamics
Published

A nanoscale view of bubble formation      (via sciencedaily.com) 

A nanoscale view of bubble formation: Using computer simulation, a research team succeeded in modeling the behavior of molecules at the liquid -- gas interface at the nanometer scale, enabling them to describe the boiling process with extreme precision. The findings could be applied to future cooling systems for microprocessors, or to the production of carbon-neutral hydrogen, known as green hydrogen.

Chemistry: Thermodynamics
Published

Great potential for aquifer thermal energy storage systems      (via sciencedaily.com) 

Aquifer thermal energy storage systems can largely contribute to climate-friendly heating and cooling of buildings: Heated water is stored in the underground and pumped up, if needed. Researchers have now found that low-temperature aquifer thermal energy storage is of great potential in Germany. This potential is expected to grow in future due to climate change.

Computer Science: Encryption Computer Science: Quantum Computers Mathematics: Puzzles
Published

Microlaser chip adds new dimensions to quantum communication      (via sciencedaily.com) 

With only two levels of superposition, the qubits used in today's quantum communication technologies have limited storage space and low tolerance for interference. Engineering's hyperdimensional microlaser generates 'qudits,' photons with four simultaneous levels of information. The increase in dimension makes for robust quantum communication technology better suited for real-world applications.

Chemistry: Thermodynamics
Published

How '2D' materials expand      (via sciencedaily.com) 

Researchers developed a technique to effectively measure the thermal expansion coefficient of two-dimensional materials. With this information, engineers could more effectively and efficiently use these atomically-thin materials to develop next-generation electronic devices that can perform better and run faster than those built with conventional materials.

Chemistry: Thermodynamics Energy: Nuclear Space: Structures and Features
Published

How does radiation travel through dense plasma?      (via sciencedaily.com) 

Researchers provide experimental data about how radiation travels through dense plasmas. Their data will improve plasma models, which allow scientists to better understand the evolution of stars and may aid in the realization of controlled nuclear fusion as an alternative energy source.

Chemistry: Thermodynamics Space: Exploration
Published

Trial by wind: Testing the heat resistance of carbon fiber-reinforced ultra-high-temperature ceramic matrix composites      (via sciencedaily.com) 

Carbon fiber-reinforced ultra-high-temperature ceramic (UHTC) matrix composites are extensively used in space shuttles and high-speed vehicles. However, these composites suffer from a lack of oxidation resistance. Recently, researchers tested the heat resistance of these composites at very high temperatures, providing insight into the modifications needed to prevent UHTC degradation. Their findings could have huge implications for the manufacture of space shuttle orbiters.

Chemistry: Thermodynamics
Published

Autonomous crawling soft 'ringbots' can navigate narrow gaps      (via sciencedaily.com) 

Researchers have created a ring-shaped soft robot capable of crawling across surfaces when exposed to elevated temperatures or infrared light. The researchers have demonstrated that these 'ringbots' are capable of pulling a small payload across the surface -- in ambient air or under water, as well as passing through a gap that is narrower than its ring size.