Showing 20 articles starting at article 141
< Previous 20 articles Next 20 articles >
Categories: Energy: Batteries, Mathematics: Puzzles
Published Going the distance for better wireless charging


Accounting for radiation loss is the key to efficient wireless power transfer over long distances.
Published Aluminum materials show promising performance for safer, cheaper, more powerful batteries


Researchers are using aluminum foil to create batteries with higher energy density and greater stability. The team's new battery system could enable electric vehicles to run longer on a single charge and would be cheaper to manufacture -- all while having a positive impact on the environment.
Published Current thinking on batteries overturned by cathode oxidation research


Scientists have made a significant breakthrough in understanding and overcoming the challenges associated with Ni-rich cathode materials used in lithium-ion batteries.
Published Dry manufacturing process offers path to cleaner, more affordable high-energy EV batteries


Early experiments have revealed significant benefits to a dry battery manufacturing process. This eliminates the use of toxic solvents while showing promise for delivering a battery that is durable, less weighed down by inactive elements and able to maintain high energy storage capacity after use. Such improvements could boost wider EV adoption, helping to reduce carbon emissions and achieve U.S. climate goals.
Published Next-generation flow battery design sets records


A new flow battery design achieves long life and capacity for grid energy storage from renewable fuels.
Published Board games are boosting math ability in young children


Board games based on numbers, like Monopoly, Othello and Chutes and Ladders, make young children better at math, according to a comprehensive review of research published on the topic over the last 23 years.
Published New design rule for high-entropy superionic solid-state conductors


Solid electrolytes with high lithium-ion conductivity can be designed for millimeter-thick battery electrodes by increasing the complexity of their composite superionic crystals, report researchers from Tokyo Tech. This new design rule enables the synthesis of high-entropy active materials while preserving their superionic conduction.
Published Nanosheet technology developed to boost energy storage dielectric capacitors


A research group has used nanosheet technology to develop a dielectric capacitor for advanced electronic and electrical power systems. Innovations in energy storage technology are vital for the effective use of renewable energy and the mass production of electric vehicles. The capacitor has the highest energy storage density recorded. It has a short charging time, high output, long life, and high temperature stability, making it a major advancement in technology.
Published New aluminium radical battery promises more sustainable power


Scientists are hoping to make the world's first safe and efficient non-toxic aqueous aluminum radical battery. Scientists have now reported the first stage of developing these novel batteries.
Published Neutrons look inside working solid-state battery to discover its key to success



Researchers have used neutron reflectometry to peer inside a working solid-state battery and monitor its electrochemistry. They discovered that its excellent performance results from an extremely thin layer, across which charged lithium atoms quickly flow as they move from anode to cathode and blend into a solid electrolyte.
Published An ingredient in toothpaste may make electric cars go farther



Scientists have developed a fluoride-containing electrolyte for lithium metal batteries that could boost the electric vehicle industry. The usefulness of this electrolyte extends to other types of advanced battery systems beyond lithium ion.
Published How the brain processes numbers -- New procedure improves measurement of human brain activity



Measuring human brain activity down to the cellular level: until now, this has been possible only to a limited extent. With a new approach it will now be much easier. The method relies on microelectrodes along with the support of brain tumor patients, who participate in studies while undergoing 'awake' brain surgery. This enabled the team to identify how our brain processes numbers.
Published Mathematicians solve long-known problem



Making history with 42 digits: Scientists have unlocked a decades-old mystery of mathematics with the so-called ninth Dedekind number. Experts worldwide have been searching for the value since 1991. Scientists arrived at the exact sequence of numbers with the help of the Noctua supercomputer.
Published Towards efficient lithium--air batteries with solution plasma-based synthesis of perovskite hydroxide catalysts



CoSn(OH)6 (CSO) is an effective oxygen evolution reaction (OER) catalyst, necessary for developing next-generation lithium -- air batteries. However, current methods of synthesizing CSO are complicated and slow. Recently, an international research team synthesized CSO in a single step within 20 minutes using solution plasma to generate CSO nanocrystals with excellent OER catalytic properties. Their findings could boost the manufacturing of high energy density batteries.
Published Aluminium-ion batteries with improved storage capacity



Scientists develop positive electrode material using an organic redox polymer based on phenothiazine. Aluminium-ion batteries containing this material stored an unprecedented 167 milliampere hours per gram, outperforming batteries using graphite as electrode material. Aluminium-ion batteries are considered a promising alternative to conventional batteries that use scarce raw materials such as lithium.
Published All-electric rideshare fleet could reduce carbon emissions, increase traffic issues



Two major ridesharing companies have promised all-electric fleets by 2030 in an effort to reduce their carbon footprint. To understand additional impacts of this transition, researchers conducted life-cycle comparisons of battery-powered electric vehicle fleets to a gas-powered one, using real-world rideshare data. They found up to a 45% reduction in greenhouse gas emissions from full electrification; however, traffic problems and air pollution could increase.
Published A novel, completely solid, rechargeable air battery



Solid-state batteries use solid electrodes and solid electrolytes, unlike the more commonly known lithium-ion batteries, which use liquid electrolytes. Solid-state batteries overcome various challenges associated with liquid-based batteries, such as flammability, limited voltage, unstable reactants, and poor long-term cyclability and strength. Making advances in this field, researchers recently demonstrated an all-solid-state rechargeable air battery composed of a redox-active organic negative electrode and a proton-conductive polymer electrolyte.
Published Megawatt electrical motor designed by engineers could help electrify aviation



Aerospace engineers designed a 1-megawatt electrical motor that is a stepping stone toward electrifying the largest aircraft.
Published New study could help unlock 'game-changing' batteries for electric vehicles and aviation



Researchers have revealed the mechanisms that cause lithium metal solid-state batteries to fail. The new insights could help overcome the technical issues with solid-state batteries, unlocking a game-changing technology for electric vehicles and aviation.
Published Calcium rechargeable battery with long cycle life



With the use of electric vehicles and grid-scale energy storage systems on the rise, the need to explore alternatives to lithium-ion batteries has never been greater. Researchers have recently developed a prototype calcium metal rechargeable battery capable of 500 cycles of repeated charge-discharge -- the benchmark for practical use. The breakthrough was made thanks to the development of a copper sulfide nanoparticle/carbon composite cathode and a hydride-based electrolyte.