Showing 20 articles starting at article 101

< Previous 20 articles        Next 20 articles >

Categories: Energy: Nuclear, Mathematics: Puzzles

Return to the site home page

Energy: Nuclear Offbeat: General Offbeat: Space Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics Space: Astrophysics Space: General Space: Structures and Features
Published

Scientists find a common thread linking subatomic color glass condensate and massive black holes      (via sciencedaily.com) 

Atomic nuclei accelerated close to the speed of light become dense walls of gluons known as color glass condensate (CGC). Recent analysis shows that CGC shares features with black holes, enormous conglomerates of gravitons that exert gravitational force across the universe. Both gluons in CGC and gravitons in black holes are organized in the most efficient manner possible for each system's energy and size.

Energy: Nuclear
Published

Better simulations of neutron scattering      (via sciencedaily.com) 

Tripoli-4® is a tool used by researchers to simulate the behaviors of interacting neutrons in 3D space. Recently, researchers have developed eTLE: a next-event simulator which aims to increase Tripoli-4®'s precision using Monte Carlo simulations. New research implements and validates eTLE's reliability.

Chemistry: Inorganic Chemistry Energy: Nuclear Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Hitting nuclei with light may create fluid primordial matter      (via sciencedaily.com) 

A new analysis supports the idea that photons colliding with heavy ions create a fluid of 'strongly interacting' particles. The results indicate that photon-heavy ion collisions can create a strongly interacting fluid that responds to the initial collision geometry and that these collisions can form a quark-gluon plasma. These findings will help guide future experiments at the planned Electron-Ion Collider.

Mathematics: Puzzles Physics: Optics
Published

Scholars unify color systems using prime numbers      (via sciencedaily.com) 

Existing color systems, such as RGB and CYMK, are all text-based and require a large range of values to represent different colors, making them difficult to compute and time-consuming to convert. Recently, researchers made a breakthrough by inventing an innovative color system, called 'C235', based on prime numbers, enabling efficient encoding and effective color compression. It can unify existing color systems and has the potential to be applied in various applications, like designing an energy-saving LCD system and colorizing DNA codons.

Energy: Nuclear Physics: General Physics: Quantum Physics
Published

Clear sign that quark-gluon plasma production 'turns off' at low energy      (via sciencedaily.com) 

Physicists report new evidence that production of an exotic state of matter in collisions of gold nuclei at the Relativistic Heavy Ion Collider (RHIC) can be 'turned off' by lowering the collision energy. The findings will help physicists map out the conditions of temperature and density under which the exotic matter, known as a quark-gluon plasma (QGP), can exist and identify key features of the phases of nuclear matter.

Energy: Nuclear Physics: General
Published

Scientists identify new mechanism of corrosion      (via sciencedaily.com) 

It started with a mystery: How did molten salt breach its metal container? Understanding the behavior of molten salt, a proposed coolant for next-generation nuclear reactors and fusion power, is a question of critical safety for advanced energy production. The multi-institutional research team, co-led by Penn State, initially imaged a cross-section of the sealed container, finding no clear pathway for the salt appearing on the outside. The researchers then used electron tomography, a 3D imaging technique, to reveal the tiniest of connected passages linking two sides of the solid container. That finding only led to more questions for the team investigating the strange phenomenon.

Energy: Nuclear
Published

New superalloy could cut carbon emissions from power plants      (via sciencedaily.com) 

Researchers have shown that a new 3D-printed superalloy could help power plants generate more electricity while producing less carbon.

Computer Science: Quantum Computers Energy: Nuclear Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Engineers discover a new way to control atomic nuclei as 'qubits'      (via sciencedaily.com) 

Researchers propose a new approach to making qubits, the basic units in quantum computing, and controlling them to read and write data. The method is based on measuring and controlling the spins of atomic nuclei, using beams of light from two lasers of slightly different colors.

Computer Science: Encryption Computer Science: General Engineering: Nanotechnology Mathematics: Puzzles Offbeat: Computers and Math Physics: Optics
Published

Chromo-encryption method encodes secrets with color      (via sciencedaily.com) 

In a new approach to security that unites technology and art, E researchers have combined silver nanostructures with polarized light to yield a range of brilliant colors, which can be used to encode messages.

Mathematics: Puzzles
Published

Video game playing causes no harm to young children's cognitive abilities, study finds      (via sciencedaily.com) 

Despite old fears that bad effects follow excessive video game playing or questionable game choices, researchers found those factors mattered little, if any, in children's brain health. The bad news? Video games assumed to be effective learning tools showed no meaningful effects, either.

Energy: Nuclear Physics: Quantum Physics
Published

Amplified search for new forces      (via sciencedaily.com) 

In the search for new forces and interactions beyond the Standard Model, an international team of researchers has now taken a good step forward. The researchers are using an amplification technique based on nuclear magnetic resonance. They use their experimental setup to study a particular exotic interaction between spins: a parity-violating interaction mediated by a new hypothetical exchange particle, called a Z' boson, which exists in addition to the Z boson mediating the weak interaction in the standard Model.

Energy: Nuclear Physics: Quantum Physics
Published

'Ghostly' neutrinos provide new path to study protons      (via sciencedaily.com) 

Scientists have discovered a new way to investigate the structure of protons using neutrinos, known as 'ghost particles.'

Computer Science: General Energy: Nuclear
Published

Color images from the shadow of a sample      (via sciencedaily.com) 

A research team has developed a new method to produce X-ray images in color. In the past, the only way to determine the chemical composition of a sample and the position of its components using X-ray fluorescence analysis was to focus the X-rays and scan the whole sample. This is time-consuming and expensive. Scientists have now developed an approach that allows an image of a large area to be produced from a single exposure, without the need for focusing and scanning.

Energy: Nuclear Engineering: Nanotechnology
Published

Researchers gain deeper understanding of mechanism behind superconductors      (via sciencedaily.com) 

Physicists have once again gained a deeper understanding of the mechanism behind superconductors. This brings researchers one step closer to their goal of developing the foundations for a theory for superconductors that would allow current to flow without resistance and without energy loss. The researchers found that in superconducting copper-oxygen bonds, called cuprates, there must be a very specific charge distribution between the copper and the oxygen, even under pressure.

Chemistry: Thermodynamics Energy: Nuclear
Published

Mitigating corrosion by liquid tin could lead to better cooling in fusion reactors      (via sciencedaily.com) 

Researchers have clarified the chemical compatibility between high temperature liquid metal tin (Sn) and reduced activation ferritic martensitic, a candidate structural material for fusion reactors. This discovery has paved the way for the development of a liquid metal tin divertor, which is an advanced heat-removal component of fusion reactors. A device called a divertor is installed in the fusion reactors to maintain the purity of the plasma. For divertors, there has been demand for liquid metals that can withstand extremely large heat loads from high-temperature plasma.

Energy: Nuclear
Published

National Ignition Facility achieves fusion ignition      (via sciencedaily.com) 

The U.S. Department of Energy (DOE) and DOE's National Nuclear Security Administration (NNSA) has announced the achievement of fusion ignition at Lawrence Livermore National Laboratory (LLNL) -- a major scientific breakthrough decades in the making. On Dec. 5, a team at LLNL's National Ignition Facility (NIF) conducted the first controlled fusion experiment in history to reach this milestone, also known as scientific energy breakeven, meaning it produced more energy from fusion than the laser energy used to drive it.

Computer Science: Virtual Reality (VR) Mathematics: Puzzles
Published

Purchasing loot boxes in video games associated with problem gambling risk, says study      (via sciencedaily.com) 

Gamers who buy 'loot boxes' are up to two times more likely to gamble, shows new research.

Mathematics: Puzzles
Published

Online gaming enhances career prospects and develops soft skills, finds new study      (via sciencedaily.com) 

Online gaming behavior can encourage gamers to gain a variety of soft skills which could assist them with training to support their career aspirations, according to new research.

Computer Science: Quantum Computers Energy: Nuclear
Published

Quantum algorithm of the direct calculation of energy derivatives developed for molecular geometry optimization      (via sciencedaily.com) 

Researchers have successfully extended the quantum phase difference estimation algorithm, a general quantum algorithm for the direct calculations of energy gaps, to enable the direct calculation of energy differences between two different molecular geometries. This allows for the computation, based on the finite difference method, of energy derivatives with respect to nuclear coordinates in a single calculation.

Computer Science: Encryption Computer Science: Quantum Computers Mathematics: Puzzles
Published

Microlaser chip adds new dimensions to quantum communication      (via sciencedaily.com) 

With only two levels of superposition, the qubits used in today's quantum communication technologies have limited storage space and low tolerance for interference. Engineering's hyperdimensional microlaser generates 'qudits,' photons with four simultaneous levels of information. The increase in dimension makes for robust quantum communication technology better suited for real-world applications.