Showing 20 articles starting at article 121
< Previous 20 articles Next 20 articles >
Categories: Engineering: Graphene, Mathematics: Puzzles
Published Strong ultralight material could aid energy storage, carbon capture



Materials scientists showed that fine-tuning interlayer interactions in a class of 2D polymers can determine the materials' loss or retention of desirable mechanical properties in multilayer or bulk form.
Published Is it COVID-19 or the flu? New sensor could tell you in 10 seconds


Have a cough, sore throat and congestion? Any number of respiratory viruses could be responsible. Today, scientists report using a single-atom-thick nanomaterial to build a device that can simultaneously detect the presence of the viruses that cause COVID-19 and the flu -- at much lower levels and much more quickly than conventional tests for either.
Published Nanophysics: The right twist


Stacked layers of ultrathin semiconductor materials feature phenomena that can be exploited for novel applications. Physicists have studied effects that emerge by giving two layers a slight twist.
Published Graphene grows -- and we can see it


Graphene is the strongest of all materials. On top of that, it is exceptionally good at conducting heat and electrical currents, making it one of the most special and versatile materials we know. For all these reasons, the discovery of graphene was awarded the Nobel Prize in Physics in 2010. Yet, many properties of the material and its cousins are still poorly understood -- for the simple reason that the atoms they are made up of are very difficult to observe.
Published New simulation reveals secrets of exotic form of electrons called polarons


Conditions mapped for the first time of polaron characteristics in 2D materials. TACC's Frontera supercomputer generated quantum mechanical calculations on hexagonal boron nitride system of 30,000 atoms.
Published Mind-control robots a reality?


Researchers have developed biosensor technology that will allow you to operate devices, such as robots and machines, solely through thought control.
Published Another crystalline layer on crystal surface as a precursor of crystal-to-crystal transition


Ice surfaces have a thin layer of water below its melting temperature of 0 degrees Celsius. Such premelting phenomenon is important for skating and snowflake growth. Similarly, liquid often crystallizes into a thin layer of crystal on a flat substrate before reaching its freezing temperature, i.e. prefreezing. The thickness of the surface layer usually increases and diverges as approaching the phase transition (such as melting and freezing) temperature. Besides premelting and prefreezing, whether similar surface phenomenon exists as a precursor of a phase transition has rarely been explored. Scientists now propose that a polymorphic crystalline layer may form on a crystal surface before the crystal-crystal phase transition and names it pre-solid-solid transition.
Published Nano cut-and-sew: New method for chemically tailoring layered nanomaterials could open pathways to designing 2D materials on demand


A new process that lets scientists chemically cut apart and stitch together nanoscopic layers of two-dimensional materials -- like a tailor altering a suit -- could be just the tool for designing the technology of a sustainable energy future. Researchers have developed a method for structurally splitting, editing and reconstituting layered materials, called MAX phases and MXenes, with the potential of producing new materials with very unusual compositions and exceptional properties.
Published 3D internal structure of rechargeable batteries revealed


Researchers have pioneered a technique to observe the 3D internal structure of rechargeable batteries. This opens up a wide range of areas for the new technique from energy storage and chemical engineering to biomedical applications.
Published Microscopy: Highest resolution in three dimensions


Researchers have developed a super-resolution microscopy method for the rapid differentiation of molecular structures in 3D.
Published Graphene quantum dots show promise as novel magnetic field sensors


Trapped electrons traveling in circular loops at extreme speeds inside graphene quantum dots are highly sensitive to external magnetic fields and could be used as novel magnetic field sensors with unique capabilities, according to a new study.
Published Scholars unify color systems using prime numbers


Existing color systems, such as RGB and CYMK, are all text-based and require a large range of values to represent different colors, making them difficult to compute and time-consuming to convert. Recently, researchers made a breakthrough by inventing an innovative color system, called 'C235', based on prime numbers, enabling efficient encoding and effective color compression. It can unify existing color systems and has the potential to be applied in various applications, like designing an energy-saving LCD system and colorizing DNA codons.
Published New material may offer key to solving quantum computing issue


A new form of heterostructure of layered two-dimensional (2D) materials may enable quantum computing to overcome key barriers to its widespread application, according to an international team of researchers.
Published The quantum twisting microscope: A new lens on quantum materials


One of the striking aspects of the quantum world is that a particle, say, an electron, is also a wave, meaning that it exists in many places at the same time. Researchers make use of this property to develop a new type of tool -- the quantum twisting microscope (QTM) -- that can create novel quantum materials while simultaneously gazing into the most fundamental quantum nature of their electrons.
Published Ramping up domestic graphite production could aid the green energy transition


Given the growing importance of graphite in energy storage technologies, a team of esearchers has conducted a study exploring ways to reduce reliance on imports of the in high-demand mineral, which powers everything from electric vehicles (EVs) to cell phones.
Published Smooth sailing for electrons in graphene


Physicists have directly measured, for the first time at nanometer resolution, the fluid-like flow of electrons in graphene. The results have applications in developing new, low-resistance materials, where electrical transport would be more efficient.
Published From plastic waste to valuable nanomaterials


Scientists create carbon nanotubes and other hybrid nanomaterials out of plastic waste using an energy-efficient, low-cost, low-emissions process that could also be profitable.
Published Chromo-encryption method encodes secrets with color


In a new approach to security that unites technology and art, E researchers have combined silver nanostructures with polarized light to yield a range of brilliant colors, which can be used to encode messages.
Published Virtual and augmented reality: Researchers pioneer process to stack micro-LEDs


Researchers are using emerging technology to demonstrate a process that will enable more immersive and realistic virtual and augmented reality displays with the world's smallest and thinnest micro-LEDs.
Published Video game playing causes no harm to young children's cognitive abilities, study finds


Despite old fears that bad effects follow excessive video game playing or questionable game choices, researchers found those factors mattered little, if any, in children's brain health. The bad news? Video games assumed to be effective learning tools showed no meaningful effects, either.