Showing 20 articles starting at article 221
< Previous 20 articles Next 20 articles >
Categories: Mathematics: Puzzles, Physics: General
Published Researchers prove fundamental limits of electromagnetic energy absorption



Electrical engineers have determined the theoretical fundamental limit for how much electromagnetic energy a transparent material with a given thickness can absorb. The finding will help engineers optimize devices designed to block certain frequencies of radiation while allowing others to pass through, for applications such as stealth or wireless communications.
Published New study shows analog computing can solve complex equations and use far less energy



A team of engineers has proven that their analog computing device, called a memristor, can complete complex, scientific computing tasks while bypassing the limitations of digital computing.
Published A new world of 2D material is opening up



Materials that are incredibly thin, only a few atoms thick, exhibit unique properties that make them appealing for energy storage, catalysis and water purification. Researchers have now developed a method that enables the synthesis of hundreds of new 2D materials.
Published AI for astrophysics: Algorithms help chart the origins of heavy elements



The origin of heavy elements in our universe is theorized to be the result of neutron star collisions, which produce conditions hot and dense enough for free neutrons to merge with atomic nuclei and form new elements in a split-second window of time. Testing this theory and answering other astrophysical questions requires predictions for a vast range of masses of atomic nuclei. Scientists are using machine learning algorithms to successfully model the atomic masses of the entire nuclide chart -- the combination of all possible protons and neutrons that defines elements and their isotopes.
Published Scientists use novel technique to create new energy-efficient microelectronic device



Researchers have created a new material that uses 'redox gating' to control the movement of electrons in and out of a semiconducting material.
Published Staying in the loop: How superconductors are helping computers 'remember'



To advance neuromorphic computing, some researchers are looking at analog improvements -- advancing not just software, but hardware too. Research shows a promising new way to store and transmit information using disordered superconducting loops.
Published Satellites for quantum communications



Through steady advances in the development of quantum computers and their ever-improving performance, it will be possible in the future to crack our current encryption processes. To address this challenge, researchers are developing encryption methods that will apply physical laws to prevent the interception of messages. To safeguard communications over long distances, the QUICK space mission will deploy satellites.
Published Scientists reveal the first unconventional superconductor that can be found in mineral form in nature



Scientists have identified the first unconventional superconductor with a chemical composition also found in nature.
Published Spiral wrappers switch nanotubes from conductors to semiconductors and back



By wrapping a carbon nanotube with a ribbon-like polymer, researchers were able to create nanotubes that conduct electricity when struck with low-energy light that our eyes cannot see. In the future, the approach could make it possible to optimize semiconductors for applications ranging from night vision to new forms of computing.
Published Powerful new tool ushers in new era of quantum materials research



Research in quantum materials is paving the way for groundbreaking discoveries and is poised to drive technological advancements that will redefine the landscapes of industries like mining, energy, transportation, and medtech. A technique called time- and angle-resolved photoemission spectroscopy (TR-ARPES) has emerged as a powerful tool, allowing researchers to explore the equilibrium and dynamical properties of quantum materials via light-matter interaction.
Published Giving particle detectors a boost



Researchers have tested the performance of a new device that boosts particle signals.
Published Design rules and synthesis of quantum memory candidates



In the quest to develop quantum computers and networks, there are many components that are fundamentally different than those used today. Like a modern computer, each of these components has different constraints. However, it is currently unclear what materials can be used to construct those components for the transmission and storage of quantum information.
Published Preventing magnet meltdowns before they can start



High-temperature superconductor magnets have the potential to lower the costs of operating particle accelerators and enable powerful new technologies like fusion reactors. But quenches -- the sudden, destructive events wherein a part of the material loses superconductivity -- are a major barrier to their deployment. Scientists have developed an approach to prevent quenches altogether, rather than simply trying to manage them after they occur.
Published Combined microscopy technique catches light-driven polymers in the act



Researchers have used tip-scan high-speed atomic force microscopy combined with an optical microscope to observe light-induced deformation of azo-polymer films. The process could be followed in real time, and the film patterns were found to change with the polarization of the light source. The observations will contribute to the use of azo-polymers in applications such as optical data storage, and the approach is expected to be useful across materials science and physical chemistry.
Published Pushing the boundary on ultralow frequency gravitational waves



A team of physicists has developed a method to detect gravity waves with such low frequencies that they could unlock the secrets behind the early phases of mergers between supermassive black holes, the heaviest objects in the universe.
Published Researchers develop new machine learning method for modeling of chemical reactions



Researchers have used machine learning to create a model that simulates reactive processes in organic materials and conditions.
Published Making quantum bits fly



Physicists are developing a method that could enable the stable exchange of information in quantum computers. In the leading role: photons that make quantum bits 'fly'.
Published Using light to precisely control single-molecule devices



Researchers flip the switch at the nanoscale by applying light to induce bonding for single-molecule device switching.
Published New method measures the 3D position of individual atoms



Since more than a decade it has been possible for physicists to accurately measure the location of individual atoms to a precision of smaller than one thousandth of a millimeter using a special type of microscope. However, this method has so far only provided the x and y coordinates. Information on the vertical position of the atom -- i.e., the distance between the atom and the microscope objective -- is lacking. A new method has now been developed that can determine all three spatial coordinates of an atom with one single image.
Published Shortcut to Success: Toward fast and robust quantum control through accelerating adiabatic passage



Researchers achieved the acceleration of adiabatic evolution of a single spin qubit in gate-defined quantum dots. After the pulse optimization to suppress quasistatic noises, the spin flip fidelity can be as high as 97.5% in GaAs quantum dots. This work may be useful to achieve fast and high-fidelity quantum computing.