Showing 20 articles starting at article 501

< Previous 20 articles        Next 20 articles >

Categories: Mathematics: Puzzles, Physics: General

Return to the site home page

Computer Science: General Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Quantum physicists simulate super diffusion on a quantum computer      (via sciencedaily.com) 

Quantum physicists have successfully simulated super diffusion in a system of interacting quantum particles on a quantum computer. This is the first step in doing highly challenging quantum transport calculations on quantum hardware and, as the hardware improves over time, such work promises to shed new light in condensed matter physics and materials science.

Engineering: Nanotechnology Physics: General
Published

Stabilizing precipitate growth at grain boundaries in alloys      (via sciencedaily.com) 

Materials are often considered to be one phase, but many engineering materials contain two or more phases, improving their properties and performance. These two-phase materials have inclusions, called precipitates, embedded in the microstructure. Alloys, a combination of two or more types of metals, are used in many applications, like turbines for jet engines and light-weight alloys for automotive applications, because they have very good mechanical properties due to those embedded precipitates. The average precipitate size, however, tends to increase over time-in a process called coarsening-which results in a degradation of performance for microstructures with nanoscale precipitates.

Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Unlocking chaos: Ultracold quantum gas reveals insights into wave turbulence      (via sciencedaily.com) 

In the intricate realm of wave turbulence, where predictability falters and chaos reigns, a groundbreaking study has emerged. The new research explores the heart of wave turbulence using an ultracold quantum gas, revealing new insights that could advance our understanding of non-equilibrium physics and have significant implications for various fields.

Computer Science: General Physics: General Physics: Optics
Published

Magnonic computing: Faster spin waves could make novel computing systems possible      (via sciencedaily.com) 

Research is underway around the world to find alternatives to our current electronic computing technology, as great, electron-based systems have limitations. A new way of transmitting information is emerging from the field of magnonics: instead of electron exchange, the waves generated in magnetic media could be used for transmission, but magnonics-based computing has been (too) slow to date. Scientists have now discovered a significant new method: When the intensity is increased, the spin waves become shorter and faster -- another step towards magnon computing.

Chemistry: Inorganic Chemistry Computer Science: Quantum Computers Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Switching 'spin' on and off (and up and down) in quantum materials at room temperature      (via sciencedaily.com) 

Researchers have found a way to control the interaction of light and quantum 'spin' in organic semiconductors, that works even at room temperature.

Computer Science: General Computer Science: Quantum Computers Engineering: Graphene Engineering: Nanotechnology Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Carbon-based quantum technology      (via sciencedaily.com) 

Graphene nanoribbons have outstanding properties that can be precisely controlled. Researchers have succeeded in attaching electrodes to individual atomically precise nanoribbons, paving the way for precise characterization of the fascinating ribbons and their possible use in quantum technology.

Energy: Nuclear Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Researchers develop a unique quantum mechanical approach to determining metal ductility      (via sciencedaily.com) 

A team of scientists developed a new quantum-mechanics-based approach to predict metal ductility. The team demonstrated its effectiveness on refractory multi-principal-element alloys.

Computer Science: General Physics: General
Published

Scientists discover novel way of reading data in antiferromagnets, unlocking their use as computer memory      (via sciencedaily.com)     Original source 

Scientists have made a significant advance in developing alternative materials for the high-speed memory chips that let computers access information quickly and that bypass the limitations of existing materials. They have discovered a way that allows them to make sense of previously hard-to-read data stored in these alternative materials, known as antiferromagnets.

Chemistry: Organic Chemistry Computer Science: Quantum Computers Computer Science: Virtual Reality (VR) Engineering: Nanotechnology Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Arrays of quantum rods could enhance TVs or virtual reality devices      (via sciencedaily.com) 

Using scaffolds of folded DNA, engineers assembled arrays of quantum rods with desirable photonic properties that could enable them to be used as highly efficient micro-LEDs for televisions or virtual reality devices.

Energy: Technology Physics: General
Published

Zentropy and the art of creating new ferroelectric materials      (via sciencedaily.com) 

Systems in the Universe trend toward disorder, with only applied energy keeping the chaos at bay. The concept is called entropy, and examples can be found everywhere: ice melting, campfire burning, water boiling. Zentropy theory, however, adds another level to the mix.

Physics: General Physics: Quantum Physics
Published

Muon g-2 doubles down with latest measurement, explores uncharted territory in search of new physics      (via sciencedaily.com) 

Scientists working on Fermilab's Muon g-2 experiment released the world's most precise measurement yet of the magnetic moment of the muon, bringing particle physics closer to the ultimate showdown between theory and experiment that may uncover new particles or forces.

Chemistry: Organic Chemistry Physics: General Physics: Optics
Published

Making molecules dance to our tune reveals what drives their first movements      (via sciencedaily.com) 

Bringing ultrafast physics to structural biology has revealed the dance of molecular 'coherence' in unprecedented clarity.

Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Potential application of unwanted electronic noise in semiconductors      (via sciencedaily.com) 

Random telegraph noise (RTN) in semiconductors is typically caused by two-state defects. Two-dimensional (2D) van der Waals (vdW) layered magnetic materials are expected to exhibit large fluctuations due to long-range Coulomb interaction; importantly, which could be controlled by a voltage compared to 3D counterparts having large charge screening. Researchers reported electrically tunable magnetic fluctuations and RTN signal in multilayered vanadium-doped tungsten diselenide (WSe2) by using vertical magnetic tunneling junction devices. They identified bistable magnetic states in the 1/f2 RTNs in noise spectroscopy, which can be further utilized for switching devices via voltage polarity.

Mathematics: Puzzles
Published

Effectiveness of video gameplay restrictions questioned in new study      (via sciencedaily.com) 

Legal restrictions placed on the amount of time young people in China can play video games may be less effective than originally thought, a new study has revealed.

Mathematics: Puzzles
Published

Social media algorithms exploit how humans learn from their peers      (via sciencedaily.com) 

In prehistoric societies, humans tended to learn from members of our ingroup or from more prestigious individuals, as this information was more likely to be reliable and result in group success. However, with the advent of diverse and complex modern communities -- and especially in social media -- these biases become less effective. For example, a person we are connected to online might not necessarily be trustworthy, and people can easily feign prestige on social media. Now, a group of social scientists describe how the functions of social media algorithms are misaligned with human social instincts meant to foster cooperation, which can lead to large-scale polarization and misinformation.

Biology: Evolutionary Mathematics: General Mathematics: Modeling Mathematics: Puzzles
Published

Scientists uncover a surprising connection between number theory and evolutionary genetics      (via sciencedaily.com) 

An interdisciplinary team of mathematicians, engineers, physicists, and medical scientists has uncovered an unexpected link between pure mathematics and genetics, that reveals key insights into the structure of neutral mutations and the evolution of organisms.

Mathematics: General Mathematics: Modeling Mathematics: Puzzles
Published

Board games are boosting math ability in young children      (via sciencedaily.com) 

Board games based on numbers, like Monopoly, Othello and Chutes and Ladders, make young children better at math, according to a comprehensive review of research published on the topic over the last 23 years.

Mathematics: Puzzles
Published

How the brain processes numbers -- New procedure improves measurement of human brain activity      (via sciencedaily.com)     Original source 

Measuring human brain activity down to the cellular level: until now, this has been possible only to a limited extent. With a new approach it will now be much easier. The method relies on microelectrodes along with the support of brain tumor patients, who participate in studies while undergoing 'awake' brain surgery. This enabled the team to identify how our brain processes numbers.

Mathematics: Puzzles
Published

Mathematicians solve long-known problem      (via sciencedaily.com)     Original source 

Making history with 42 digits: Scientists have unlocked a decades-old mystery of mathematics with the so-called ninth Dedekind number. Experts worldwide have been searching for the value since 1991. Scientists arrived at the exact sequence of numbers with the help of the Noctua supercomputer.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Energy: Technology Environmental: General Environmental: Water Geoscience: Environmental Issues Geoscience: Geochemistry Physics: General
Published

Don't wait, desalinate: A new approach to water purification      (via sciencedaily.com)     Original source 

A water purification system separates out salt and other unnecessary particles with an electrified version of dialysis. Successfully applied to wastewater with planned expansion into rivers and seas, the method saves money and saps 90% less energy than its counterparts.