Showing 20 articles starting at article 101
< Previous 20 articles Next 20 articles >
Categories: Geoscience: Earthquakes, Mathematics: Puzzles
Published Puerto Rico tsunami deposit could have come from pre-Columbian megathrust earthquake



Tsunami deposits identified in a coastal mangrove pond in Northwest Puerto Rico could have come from a megathrust earthquake at the Puerto Rico Trench that occurred between 1470 and 1530, according to new research.
Published Turkey's next quake: Research shows where, how bad -- but not 'when'



Using remote sensing, geophysicists have documented the massive Feb. 6 quake that killed more than 50,000 people in Eastern Turkey and toppled more than 100,000 buildings. Alarmingly, researchers found that a section of the fault remains unbroken and locked -- a sign that the plates there may, when friction intensifies, generate another magnitude 6.8 earthquake when it finally gives way.
Published New USGS-FEMA report updates economic risk from earthquakes



Even though most of the economic losses are concentrated in California and along the West Coast due to that region's high seismic hazard levels, significant population, and building exposure, earthquake risk is spread throughout the country. For example, there is a combined $3.1 billion per year in projected losses across the central U.S., Rocky Mountain region, Alaska, Hawaii, Puerto Rico and the Virgin Islands.
Published Plate tectonic processes in the Pacific and Atlantic during the Cretaceous period have shaped the Caribbean region to this day



Earthquakes and volcanism occur as a result of plate tectonics. The movement of tectonic plates themselves is largely driven by the process known as subduction. The question of how new active subduction zones come into being, however, is still under debate. An example of this is the volcanic Lesser Antilles arc in the Caribbean. A research team recently developed models that simulated the occurrences in the Caribbean region during the Cretaceous, when a subduction event in the Eastern Pacific led to the formation of a new subduction zone in the Atlantic. The computer simulations show how the collision of the old Caribbean plateau with the Greater Antilles arc contributed to the creation of this new Atlantic subduction zone. Some 86 million years ago, the triggered processes subsequently resulted in a major mantle flow and thus to the development of the Caribbean large igneous province.
Published Warm liquid spewing from Oregon seafloor comes from Cascadia fault, could offer clues to earthquake hazards



Oceanographers discovered warm, chemically distinct liquid shooting up from the seafloor about 50 miles off Newport. They named the unique underwater spring 'Pythia's Oasis.' Observations suggest the spring is sourced from water 2.5 miles beneath the seafloor at the plate boundary, regulating stress on the offshore subduction zone fault.
Published Was plate tectonics occurring when life first formed on Earth?



Researchers used small zircon crystals to unlock information about magmas and plate tectonic activity in early Earth. The research provides chemical evidence that plate tectonics was most likely occurring more than 4.2 billion years ago when life is thought to have first formed on our planet. This finding could prove beneficial in the search for life on other planets.
Published Messages about the 'felt intensity' of earthquakes via app can potentially assist early disaster management


After an earthquake, it is crucial in the early phase of disaster management to obtain a rapid assessment of the severity of the impact on the affected population in order to be able to initiate adequate emergency measures. A first quick and good assessment of whether an earthquake causes severe or minor damage can often be given after only 10 minutes by information from affected people about the 'felt intensity' of the earthquake.
Published Scholars unify color systems using prime numbers


Existing color systems, such as RGB and CYMK, are all text-based and require a large range of values to represent different colors, making them difficult to compute and time-consuming to convert. Recently, researchers made a breakthrough by inventing an innovative color system, called 'C235', based on prime numbers, enabling efficient encoding and effective color compression. It can unify existing color systems and has the potential to be applied in various applications, like designing an energy-saving LCD system and colorizing DNA codons.
Published Deep earthquakes could reveal secrets of the Earth's mantle


A new study suggests there may be a layer of surprisingly fluid rock ringing the Earth, at the very bottom of the upper mantle.
Published Bouncing seismic waves reveal distinct layer in Earth's inner core


Data captured from seismic waves caused by earthquakes has shed new light on the deepest parts of Earth's inner core, according to seismologists.
Published Earthquake scientists have a new tool in the race to find the next big one


New research on friction between faults could aid in predicting the world's most powerful earthquakes. Researchers discovered that fault surfaces bond together, or heal, after an earthquake. A fault that is slow to heal is more likely to move harmlessly, while one that heals quickly is more likely to stick until it breaks in a large, damaging earthquake. Tests allowed them to calculate a slow, harmless type of tremor. The discovery alone won't allow scientists to predict when the next big one will strike but it does give researchers a valuable new way to investigate the causes and potential for a large, damaging earthquake to happen, and guide efforts to monitor large faults like Cascadia in the Pacific Northwest.
Published Chromo-encryption method encodes secrets with color


In a new approach to security that unites technology and art, E researchers have combined silver nanostructures with polarized light to yield a range of brilliant colors, which can be used to encode messages.
Published Exact magma locations may improve volcanic eruption forecasts


Cornell University researchers have unearthed precise, microscopic clues to where magma is stored, offering a way to better assess the risk of volcanic eruptions.
Published Video game playing causes no harm to young children's cognitive abilities, study finds


Despite old fears that bad effects follow excessive video game playing or questionable game choices, researchers found those factors mattered little, if any, in children's brain health. The bad news? Video games assumed to be effective learning tools showed no meaningful effects, either.
Published Scientists detect molten rock layer hidden under Earth's tectonic plates


Scientists have discovered a new layer of partly molten rock under the Earth's crust that might help settle a long-standing debate about how tectonic plates move. The molten layer is located about 100 miles from the surface and is part of the asthenosphere, which is important for plate tectonics because it forms a relatively soft boundary that lets tectonic plates move through the mantle. The researchers found, however that the melt does not appear to notably influence the flow of mantle rocks. Instead, they say, the discovery confirms that the convection of heat and rock in the mantle are the prevailing influence on the motion of the plates.
Published Looking back at the Tonga eruption


A 'back-projection' technique reveals new details of the volcanic eruption in Tonga that literally shook the world.
Published Researchers uncover secrets on how Alaska's Denali Fault formed


New findings begin to fill major gaps in understanding about how geological faults behave and appear as they deepen, and they could eventually help lead future researchers to develop better earthquake models on strike-slip faults, regions with frequent and major earthquakes.
Published The adverse health effects of disaster-related trauma


A new study has found that individuals from disadvantaged backgrounds are more likely to experience disaster-related home loss, and they are also more likely to develop functional limitations following the disaster.
Published Hawai'i earthquake swarm caused by magma moving through 'sills'


A machine-learning algorithm reveals the shape of massive subterranean structures linking active volcanoes.
Published Study shows how machine learning could predict rare disastrous events, like earthquakes or pandemics


Researchers suggest how scientists can circumvent the need for massive data sets to forecast extreme events with the combination of an advanced machine learning system and sequential sampling techniques.