Showing 20 articles starting at article 421
< Previous 20 articles Next 20 articles >
Categories: Energy: Alternative Fuels, Mathematics: Modeling
Published Using AI, scientists find a drug that could combat drug-resistant infections



Using AI, researchers identified a new antibiotic that can kill Acinetobacter baumannii, a type of bacteria that is responsible for many drug-resistant infections.
Published Scientists propose revolution in complex systems modelling with quantum technologies



Scientists have made a significant advancement with quantum technologies that could transform complex systems modelling with an accurate and effective approach that requires significantly re-duced memory.
Published New method predicts extreme events more accurately



A new study has used global storm-resolving simulations and machine learning to create an algorithm that can deal separately with two different scales of cloud organization: those resolved by a climate model, and those that cannot be resolved as they are too small. This new approach addresses the missing piece of information in traditional climate model parameterizations and provides a way to predict precipitation intensity and variability more precisely.
Published New supply chain model to empower seabound hydrogen economy



A team of researchers has created a new supply chain model which could empower the international hydrogen renewable energy industry.
Published Demystifying vortex rings in nuclear fusion, supernovae



Better understanding the formation of swirling, ring-shaped disturbances -- known as vortex rings -- could help nuclear fusion researchers compress fuel more efficiently, bringing it closer to becoming a viable energy source. A mathematical model linking these vortices with more pedestrian types, like smoke rings, could help engineers control their behavior in power generation and more.
Published Driving on sunshine: Clean, usable liquid fuels made from solar power



Researchers have developed a solar-powered technology that converts carbon dioxide and water into liquid fuels that can be added directly to a car's engine as drop-in fuel.
Published Watch these cells rapidly create protrusions for exploration and movement



In order to move, cells must be able to rapidly change shape. A team of researchers show that cells achieve this by storing extra 'skin' in folds and bumps on their surface. This cell surface excess can be rapidly deployed to cover temporary protrusions and then folded away for next time.
Published A better way to study ocean currents



Computer scientists and oceanographers developed a machine-learning model that generates more accurate predictions about the velocities of ocean currents. The model could help make more precise weather forecasts or effectively predict how oil will spread after a spill.
Published Curved spacetime in a quantum simulator



The connection between quantum physics and the theory of relativity is extremely hard to study. But now, scientists have set up a model system, which can help: Quantum particles can be tuned in such a way that the results can be translated into information about other systems, which are much harder to observe. This kind of 'quantum simulator' works very well and can lead to new insights about the nature of relativity and quantum physics.
Published Unlocking the power of photosynthesis for clean energy production



Researchers are embarking on a groundbreaking project to mimic the natural process of photosynthesis using bacteria to deliver electrons to a nanocrystal semiconductor photocatalyst. By leveraging the unique properties of microorganisms and nanomaterials, the system has the potential to replace current approaches that derive hydrogen from fossil fuels, revolutionizing the way hydrogen fuel is produced and unlocking a powerful source of renewable energy.
Published Extending the life of a lithium metal anode using a protective layer made of an extremely tough gel electrolyte



A research team has succeeded in substantially improving the cycling performance of a lithium metal battery by developing a mechanically very strong polymeric gel electrolyte and integrating it into the battery as a layer to protect the lithium metal anode. This achievement may greatly facilitate efforts to put lithium metal anodes -- a potentially very high performance anode material -- into practical use.
Published Extracting the best flavor from coffee



Researchers explore the role of uneven coffee extraction using a simple mathematical model. They split the coffee into two regions to examine whether uneven flow does in fact make weaker espresso. One of the regions in the model system hosted more tightly packed coffee than the other, which caused an initial disparity in flow resistance. The extraction of coffee decreased the flow resistance further. Understanding the origin of uneven extraction and avoiding or preventing it could enable better brews and substantial financial savings by using coffee more efficiently.
Published Exciton fission: One photon in, two electrons out



Photovoltaics, the conversion of light to electricity, is a key technology for sustainable energy. Since the days of Max Planck and Albert Einstein, we know that light as well as electricity are quantized, meaning they come in tiny packets called photons and electrons. In a solar cell, the energy of a single photon is transferred to a single electron of the material, but no more than one. Only a few molecular materials like pentacene are an exception, where one photon is converted to two electrons instead. This excitation doubling, which is called exciton fission, could be extremely useful for high-efficiency photovoltaics, specifically to upgrade the dominant technology based on silicon. Researchers have now deciphered the first step of this process by recording an ultrafast movie of the photon-to-electricity conversion process, resolving a decades-old debate about the mechanism of the process.
Published Researchers develop an additive to efficiently improve the efficiency and stability of perovskite solar cells



Perovskite solar cells (PVSCs) are a promising alternative to traditional silicon-based solar cells because of their high power-conversion efficiency and low cost. However, one of the major challenges in their development has been achieving long-term stability. Recently, a research team made a breakthrough by developing an innovative multifunctional and non-volatile additive which can improve the efficiency and stability of perovskite solar cells by modulating perovskite film growth. This simple and effective strategy has great potential for facilitating the commercialization of PVSCs.
Published Structured exploration allows biological brains to learn faster than AI



Neuroscientists have uncovered how exploratory actions enable animals to learn their spatial environment more efficiently. Their findings could help build better AI agents that can learn faster and require less experience.
Published Unraveling the mathematics behind wiggly worm knots



Researchers wanted to understand precisely how blackworms execute tangling and ultrafast untangling movements for a myriad of biological functions. They researched the topology of the tangles. Their research could inform the design of fiber-like, shapeshifting robotics that self-assemble and move in ways that are fast and reversible.
Published New chemistry can extract virgin-grade materials from wind turbine blades in one process



Researchers have developed a chemical process that can disassemble the epoxy composite of wind turbine blades and simultaneously extract intact glass fibers as well as one of the epoxy resin's original building blocks in a high quality. The recovered materials could potentially be used in the production of new blades.
Published Creating a tsunami early warning system using artificial intelligence



Researchers develop an early warning system that combines acoustic technology with AI to immediately classify earthquakes and determine potential tsunami risk. They propose using underwater microphones, called hydrophones, to measure the acoustic radiation produced by the earthquake, which carries information about the tectonic event and travels significantly faster than tsunami waves. The computational model triangulates the source of the earthquake and AI algorithms classify its slip type and magnitude. It then calculates important properties like effective length and width, uplift speed, and duration, which dictate the size of the tsunami.
Published Outstanding performance of organic solar cell using tin oxide



Organic solar cells have a photoactive layer that is made from polymers and small molecules. The cells are very thin, can be flexible, and are easy to make. However, the efficiency of these cells is still much below that of conventional silicon-based ones. Applied physicists have now fabricated an organic solar cell with an efficiency of over 17 percent, which is in the top range for this type of material. It has the advantage of using an unusual device structure that is produced using a scalable technique.
Published Scientists have full state of a quantum liquid down cold



A team of physicists has illuminated certain properties of quantum systems by observing how their fluctuations spread over time. The research offers an intricate understanding of a complex phenomenon that is foundational to quantum computing.