Showing 20 articles starting at article 281
< Previous 20 articles Next 20 articles >
Categories: Energy: Fossil Fuels, Mathematics: Modeling
Published Quantum liquid becomes solid when heated



Solids can be melted by heating, but in the quantum world it can also be the other way around: An experimental team has shown how a quantum liquid forms supersolid structures by heating. The scientists obtained a first phase diagram for a supersolid at finite temperature.
Published Shutting down nuclear power could increase air pollution



A new study shows that if U.S. nuclear power plants are retired, the burning of coal, oil, and natural gas to fill the energy gap could cause more than 5,000 premature deaths.
Published New atomic-scale understanding of catalysis could unlock massive energy savings



In an advance they consider a breakthrough in computational chemistry research, chemical engineers have developed a model of how catalytic reactions work at the atomic scale. This understanding could allow engineers and chemists to develop more efficient catalysts and tune industrial processes -- potentially with enormous energy savings, given that 90% of the products we encounter in our lives are produced, at least partially, via catalysis.
Published Random matrix theory approaches the mystery of the neutrino mass



Scientists analyzed each element of the neutrino mass matrix belonging to leptons and showed theoretically that the intergenerational mixing of lepton flavors is large. Furthermore, by using the mathematics of random matrix theory, the research team was able to demonstrate, as much as is possible at this stage, why the calculation of the squared difference of the neutrino masses are in close agreement with the experimental results in the case of the seesaw model with the random Dirac and Majorana matrices. The results of this research are expected to contribute to the further development of particle theory research, which largely remains a mystery.
Published Moving towards 3 degrees of warming -- the phasing out of coal is too slow



The use of coal power is not decreasing fast enough. The Paris Agreement's target of a maximum of 2 degrees of warming appear to be missed, and the world is moving towards a temperature increase of 2.5 -- 3 degrees. At the same time it is feasible to avoid higher warming.
Published Sailing cargo ships can benefit from new aerodynamic tech



A research team has demonstrated a unique method that reduces the aerodynamic resistance of ships by 7.5 per cent. This opens the way for large cargo ships borne across the oceans by wind alone, as wind-powered ships are more affected by aerodynamic drag than fossil-fueled ones.
Published New details of SARS-COV-2 structure


Researchers used computational modeling to reveal finer details surrounding the outer shell of the COVID-19 virus. The work expands the scientific community's understanding of SARS-COV-2, and could lead to more refined antiviral therapies and better vaccines.
Published Can AI predict how you'll vote in the next election?


Artificial intelligence technologies like ChatGPT are seemingly doing everything these days: writing code, composing music, and even creating images so realistic you'll think they were taken by professional photographers. Add thinking and responding like a human to the conga line of capabilities. A recent study proves that artificial intelligence can respond to complex survey questions just like a real human.
Published AI could set a new bar for designing hurricane-resistant buildings


Being able to withstand hurricane-force winds is the key to a long life for many buildings on the Eastern Seaboard and Gulf Coast of the U.S. Determining the right level of winds to design for is tricky business, but support from artificial intelligence may offer a simple solution.
Published Machine learning model helps forecasters improve confidence in storm prediction


When severe weather is brewing and life-threatening hazards like heavy rain, hail or tornadoes are possible, advance warning and accurate predictions are of utmost importance. Weather researchers have given storm forecasters a powerful new tool to improve confidence in their forecasts and potentially save lives. Over the last several years, Russ Schumacher, professor in the Department of Atmospheric Science and Colorado State Climatologist, has led a team developing a sophisticated machine learning model for advancing skillful prediction of hazardous weather across the continental United States. First trained on historical records of excessive rainfall, the model is now smart enough to make accurate predictions of events like tornadoes and hail four to eight days in advance -- the crucial sweet spot for forecasters to get information out to the public so they can prepare. The model is called CSU-MLP, or Colorado State University-Machine Learning Probabilities.
Published Eco-efficient cement could pave the way to a greener future


Scientists develop process to remove toxic heavy metals from coal fly ash, making for greener, stronger concrete.
Published Team uses natural catalysts to develop low-cost way of producing green hydrogen


Researchers have developed a practical way to produce green hydrogen using sustainable catalysts and say their work is a major step towards production simpler, more affordable and more scalable.
Published Probe where the protons go to develop better fuel cells



Researchers have uncovered the chemical inner-workings of an electrolyte they developed for a new generation of solid oxide fuel cells. To uncover the location of the proton-introduction reaction, the team studied extensively the hydration reaction of their scandium-substituted barium zirconate perovskite through a combination of synchrotron radiation analysis, large-scale simulations, machine learning, and thermogravimetric analysis. The new data has the potential to accelerate the development of more efficient fuel cells.
Published Could changes in Fed's interest rates affect pollution and the environment?


Can monetary policy such as the U.S. Federal Reserve raising interest rates affect the environment? According to a new study, it can. Results suggest that the impact of monetary policy on pollution is basically domestic: a monetary contraction or reduction in a region reduces its own emissions, but this does not seem to spread out to other economies. However, the findings do not imply that the international economy is irrelevant to determining one region's emissions level. The actions of a country, like the U.S., are not restricted to its borders. For example, a positive shock in the Federal Reserve's monetary policy may cause adjustments in the whole system, including the carbon emissions of the other regions.
Published Public acceptance of fossil fuel subsidy removal could be improved in developing countries


People might be more positive to the removal of fuel subsidies if told where the money would be spent instead. This has been shown in a study which investigated attitudes towards removing fossil fuel subsidies in five developing countries.
Published Modelling superfast processes in organic solar cell material


In organic solar cells, carbon-based polymers convert light into charges that are passed to an acceptor. Scientists have now calculated how this happens by combining molecular dynamics simulations with quantum calculations and have provided theoretical insights to interpret experimental data.
Published Rsearchers examine combined effects of two combustion technologies on the emission of coal-fired boilers


There is currently a large dependence on coal for power generation. As coal-fired plants cause environmental and health hazards, technologies such as swirl flow and air staging have been proposed to mitigate the pollutants in their emissions. However, it is unclear how effective these technologies are in reducing the environmental costs of these plants. Now, researchers have provided insights on this front in a new study, delineating their efficacies with experiments and simulations.
Published Researcher solves nearly 60-year-old game theory dilemma


A researcher has solved a nearly 60-year-old game theory dilemma called the wall pursuit game, with implications for better reasoning about autonomous systems such as driver-less vehicles.
Published Fighting intolerance with physics


In a world experiencing growing inequality and intolerance, tools borrowed from science and mathematics could be the key to understanding and preventing prejudice. Experts apply evolutionary game theory, which combines techniques from economics and biology, and complex system analysis to investigate the relationship between inequality and intolerance. They found that inequality boosts intolerance and that redistribution of wealth can prevent its infectious spread.
Published Switching to hydrogen fuel could prolong the methane problem


Hydrogen is often heralded as the clean fuel of the future, but new research suggests that leaky hydrogen infrastructure could end up increasing atmospheric methane levels, which would cause decades-long climate consequences.