Showing 20 articles starting at article 521
< Previous 20 articles Next 20 articles >
Categories: Mathematics: Modeling, Physics: General
Published AI trained to identify least green homes



First of its kind AI-model can help policy-makers efficiently identify and prioritize houses for retrofitting and other decarbonizing measures.
Published What a '2D' quantum superfluid feels like to the touch



Researchers have discovered how superfluid helium 3He would feel if you could put your hand into it. The interface between the exotic world of quantum physics and classical physics of the human experience is one of the major open problems in modern physics. Nobody has been able to answer this question during the 100-year history of quantum physics.
Published Optical-fiber based single-photon light source at room temperature for next-generation quantum processing



Single-photon emitters quantum mechanically connect quantum bits (or qubits) between nodes in quantum networks. They are typically made by embedding rare-earth elements in optical fibers at extremely low temperatures. Now, researchers have developed an ytterbium-doped optical fiber at room temperature. By avoiding the need for expensive cooling solutions, the proposed method offers a cost-effective platform for photonic quantum applications.
Published Bartering light for light: Scientists discover new system to control the chaotic behavior of light



Researchers describe a new platform for controlling the chaotic behavior of light by tailoring its scattering patterns using light itself.
Published Reverse engineering Jackson Pollock



Researchers combined physics and machine learning to develop a new 3D-printing technique that can quickly create complex physical patterns -- including replicating a segment of a Pollock painting -- by leveraging the same natural fluid instability that Pollock used in his work.
Published Late not great -- imperfect timekeeping places significant limit on quantum computers



Quantum physicists show that imperfect timekeeping places a fundamental limit to quantum computers and their applications. The team claims that even tiny timing errors add up to place a significant impact on any large-scale algorithm, posing another problem that must eventually be solved if quantum computers are to fulfill the lofty aspirations that society has for them.
Published The brain may learn about the world the same way some computational models do



New studies support the idea that the brain uses a process similar to a machine-learning approach known as 'self-supervised learning.' This type of machine learning allows computational models to learn about visual scenes based solely on the similarities and differences between them, with no labels or other information.
Published Wireless device makes magnetism appear in non-magnetic materials



Researchers have succeeded in bringing wireless technology to the fundamental level of magnetic devices. The emergence and control of magnetic properties in cobalt nitride layers (initially non-magnetic) by voltage, without connecting the sample to electrical wiring, represents a paradigm shift that can facilitate the creation of magnetic nanorobots for biomedicine and computing systems where basic information management processes do not require wiring.
Published AI can alert urban planners and policymakers to cities' decay



As urbanization advances around the globe, the quality of the urban physical environment will become increasingly critical to human well-being and to sustainable development initiatives. However, measuring and tracking the quality of an urban environment, its evolution and its spatial disparities is difficult due to the amount of on-the-ground data needed to capture these patterns.
Published Controlling waves in magnets with superconductors for the first time



Quantum physicists have shown that it's possible to control and manipulate spin waves on a chip using superconductors for the first time. These tiny waves in magnets may offer an alternative to electronics in the future, interesting for energy-efficient information technology or connecting pieces in a quantum computer, for example. The breakthrough primarily gives physicists new insight into the interaction between magnets and superconductors.
Published Breakthrough synthesis method improves solar cell stability



A new process yields 2D halide perovskite crystal layers of ideal thickness and purity through dynamic control of the crystallization process -- a key step toward ensuring device stability for optoelectronics and photovoltaics.
Published New research finds stress and strain changes metal electronic structure



New research shows that the electronic structure of metals can strongly affect their mechanical properties.
Published A superatomic semiconductor sets a speed record



The search is on for better semiconductors. A team of chemists describes the fastest and most efficient semiconductor yet: a superatomic material called Re6Se8Cl2.
Published Conduction electrons drive giant, nonlinear elastic response in Sr2RuO4



The hardness of a material normally is set by the strength of chemical bonds between electrons of neighboring atoms, not by freely flowing conduction electrons. Now a team of scientists has shown that current-carrying electrons can make the lattice much softer than usual in the material Sr2RuO4.
Published Major milestone achieved in new quantum computing architecture



Researchers report a significant advance in quantum computing. They have prolonged the coherence time of their single-electron qubit to an impressive 0.1 milliseconds, nearly a thousand-fold improvement.
Published Physicists simulate interacting quasiparticles in ultracold quantum gas



In physics, quasiparticles are used to describe complex processes in solids. In ultracold quantum gases, these quasiparticles can be reproduced and studied. Now scientists have been able to observe in experiments how Fermi polarons -- a special type of quasiparticle -- can interact with each other.
Published Using sound to test devices, control qubits



Researchers have developed a system that uses atomic vacancies in silicon carbide to measure the stability and quality of acoustic resonators. What's more, these vacancies could also be used for acoustically-controlled quantum information processing, providing a new way to manipulate quantum states embedded in this commonly-used material.
Published Single model predicts trends in employment, microbiomes, forests



Researchers report that a single, simplified model can predict population fluctuations in three unrelated realms: urban employment, human gut microbiomes and tropical forests. The model will help economists, ecologists, public health authorities and others predict and respond to variability in multiple domains.
Published Achieving large and uniform particle sizes



Dispersions of polymer particles in a liquid phase (latexes) have many important applications in coatings technology, medical imaging, and cell biology. A team of researchers has now developed a method to produce stable polystyrene dispersions with unprecedentedly large, and uniform, particle sizes. Narrow size distributions are essential in many advanced technologies, but were previously difficult to produce photochemically.
Published How quantum light 'sees' quantum sound



Researchers have proposed a new way of using quantum light to 'see' quantum sound. A new paper reveals the quantum-mechanical interplay between vibrations and particles of light, known as photons, in molecules. It is hoped that the discovery may help scientists better understand the interactions between light and matter on molecular scales. And it potentially paves the way for addressing fundamental questions about the importance of quantum effects in applications ranging from new quantum technologies to biological systems.