Showing 20 articles starting at article 61

< Previous 20 articles        Next 20 articles >

Categories: Mathematics: Modeling, Physics: General

Return to the site home page

Chemistry: Biochemistry Chemistry: General Chemistry: Thermodynamics Energy: Alternative Fuels Energy: Nuclear Energy: Technology Physics: General Physics: Optics
Published

Fresh light on the path to net zero      (via sciencedaily.com)     Original source 

Researchers have used magnetic fields to reveal the mystery of how light particles split. Scientists are closer to giving the next generation of solar cells a powerful boost by integrating a process that could make the technology more efficient by breaking particles of light photons into small chunks.

Computer Science: Quantum Computers Engineering: Graphene Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

'Kink state' control may provide pathway to quantum electronics      (via sciencedaily.com)     Original source 

The key to developing quantum electronics may have a few kinks. According to researchers, that's not a bad thing when it comes to the precise control needed to fabricate and operate such devices, including advanced sensors and lasers. The researchers fabricated a switch to turn on and off the presence of kink states, which are electrical conduction pathways at the edge of semiconducting materials.

Chemistry: Biochemistry Chemistry: Organic Chemistry Physics: General
Published

How molecular interactions make it possible to overcome the energy barrier      (via sciencedaily.com)     Original source 

Non-reciprocal interactions allow the design of more efficient molecular systems. Scientists now propose a mechanism on how energy barriers in complex systems can be overcome. These findings can help to engineer molecular machines and to understand the self-organization of active matter.

Chemistry: Biochemistry Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Quantum sensor for the atomic world      (via sciencedaily.com)     Original source 

In a scientific breakthrough, an international research team has developed a quantum sensor capable of detecting minute magnetic fields at the atomic length scale. This pioneering work realizes a long-held dream of scientists: an MRI-like tool for quantum materials.

Chemistry: Biochemistry Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Nonreciprocal interactions go nonlinear      (via sciencedaily.com)     Original source 

Using two optically trapped glass nanoparticles, researchers observed a novel collective Non-Hermitian and nonlinear dynamic driven by nonreciprocal interactions. This contribution expands traditional optical levitation with tweezer arrays by incorporating the so called non-conservative interactions.

Computer Science: General Environmental: General Environmental: Water Geoscience: Environmental Issues Geoscience: Severe Weather Mathematics: Modeling
Published

Raindrops grow with turbulence in clouds      (via sciencedaily.com)     Original source 

Tackling a long-time mystery, scientists have found that the turbulent movements of air in clouds play a key role in the growth of water droplets and the initiation of rain. The research can improve computer model simulations of weather and climate and ultimately lead to better forecasts.

Mathematics: Modeling
Published

Can a computer tell patients how their multiple sclerosis will progress?      (via sciencedaily.com)     Original source 

Machine learning models can reliably inform clinicians about the disability progression of multiple sclerosis, according to a new study published this week in the open-access journal PLOS Digital Health by Edward De Brouwer of KU Leuven, Belgium, and colleagues.

Computer Science: General Computer Science: Quantum Computers Offbeat: Computers and Math Offbeat: General Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Spin qubits go trampolining      (via sciencedaily.com)     Original source 

Researchers have developed somersaulting spin qubits for universal quantum logic. This achievement may enable efficient control of large semiconductor qubit arrays. The research group recently published their demonstration of hopping spins and somersaulting spins.

Mathematics: Modeling
Published

Large language models don't behave like people, even though we may expect them to      (via sciencedaily.com)     Original source 

People generalize to form beliefs about a large language model's performance based on what they've seen from past interactions. When an LLM is misaligned with a person's beliefs, even an extremely capable model may fail unexpectedly when deployed in a real-world situation.

Chemistry: Biochemistry Chemistry: Inorganic Chemistry Energy: Nuclear Offbeat: General Physics: General
Published

A new way to make element 116 opens the door to heavier atoms      (via sciencedaily.com)     Original source 

Researchers have successfully made super-heavy element 116 using a beam of titanium-50. That milestone sets the team up to attempt making the heaviest element yet: 120.

Chemistry: General Chemistry: Thermodynamics Energy: Alternative Fuels Physics: General
Published

3D-printed microstructure forest facilitates solar steam generator desalination      (via sciencedaily.com)     Original source 

Faced with the world's impending freshwater scarcity, researchers turned to solar steam generators, which are emerging as a promising device for seawater desalination. The team sought design inspiration from trees and harnessed the potential of 3D printing. They present technology for producing efficient SSGs for desalination and introduces a novel method for printing functional nanocomposites for multi-jet fusion. Their SSGs were inspired by plant transpiration and are composed of miniature tree-shaped microstructures, forming an efficient, heat-distributing forest.

Mathematics: Modeling
Published

Risks and benefits of integrating AI into medical decision-making      (via sciencedaily.com)     Original source 

Researchers found that an artificial intelligence (AI) model solved medical quiz questions -- designed to test health professionals' ability to diagnose patients based on clinical images and a brief text summary -- with high accuracy. However, physician-graders found the AI model made mistakes when describing images and explaining how its decision-making led to the correct answer.

Mathematics: General Mathematics: Modeling
Published

There is mathematical proof in the pudding      (via sciencedaily.com)     Original source 

In blockchain development, there is a rule of thumb that only two of scalability, security, and decentralization are valid simultaneously. However, the mathematical expression of that rule was still a work in progress. Researchers discovered a mathematical expression for the blockchain trilemma. In the formula for Proof of Work-based blockchains, including Bitcoin, the product of the three terms--scalability, security, and decentralization--is 1.

Computer Science: General Mathematics: Modeling
Published

Are AI-chatbots suitable for hospitals?      (via sciencedaily.com)     Original source 

Large language models may pass medical exams with flying colors but using them for diagnoses would currently be grossly negligent. Medical chatbots make hasty diagnoses, do not adhere to guidelines, and would put patients' lives at risk. A team has systematically investigated whether this form of artificial intelligence (AI) would be suitable for everyday clinical practice. Despite the current shortcomings, the researchers see potential in the technology. They have published a method that can be used to test the reliability of future medical chatbots.

Computer Science: General Environmental: Wildfires Geoscience: Severe Weather Mathematics: Modeling
Published

Scientists use AI to predict a wildfire's next move      (via sciencedaily.com)     Original source 

Researchers have developed a new model that combines generative AI and satellite data to accurately forecast wildfire spread.

Energy: Nuclear Physics: General
Published

Come closer: Titanium-48's nuclear structure changes when observed at varying distances      (via sciencedaily.com)     Original source 

Researchers have found that titanium-48 changes from a shell model structure to an alpha-cluster structure depending on the distance from the center of the nucleus. The results upend the conventional understanding of nuclear structure and are expected to provide clues to the Gamow theory on the alpha-decay process that occurs in heavy nuclei, which has not been solved for nearly 100 years.

Physics: General Physics: Quantum Physics
Published

Powerful new particle accelerator a step closer with muon-marshalling technology      (via sciencedaily.com)     Original source 

New experimental results show particles called muons can be corralled into beams suitable for high-energy collisions, paving the way for new physics.

Chemistry: General Chemistry: Inorganic Chemistry Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Physicists develop new theory describing the energy landscape formed when quantum particles gather together      (via sciencedaily.com)     Original source 

An international team of physicists has proven new theorems in quantum mechanics that describe the 'energy landscapes' of collections of quantum particles. Their work addresses decades-old questions, opening up new routes to make computer simulation of materials much more accurate. This, in turn, may help scientists design a suite of materials that could revolutionize green technologies.

Computer Science: General Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Paving the way to extremely fast, compact computer memory      (via sciencedaily.com)     Original source 

Researchers have demonstrated that the layered multiferroic material nickel iodide (NiI2) may be the best candidate yet for devices such as magnetic computer memory that are extremely fast and compact. Specifically, they found that NiI2 has greater magnetoelectric coupling than any known material of its kind.