Showing 20 articles starting at article 81
< Previous 20 articles Next 20 articles >
Categories: Mathematics: Modeling, Space: Astrophysics
Published Star clusters observed within a galaxy in the early Universe



The history of how stars and galaxies came to be and evolved into the present day remains among the most challenging astrophysical questions to solve yet, but new research brings us closer to understanding it. New insights about young galaxies during the Epoch of Reionization have been revealed. Observations with the James Webb Space Telescope (JWST) of the galaxy Cosmic Gems arc (SPT0615-JD) have confirmed that the light of the galaxy was emitted 460 million years after the big bang. What makes this galaxy unique is that it is magnified through an effect called gravitational lensing, which has not been observed in other galaxies formed during that age.
Published Prying open the AI black box



Meet SQUID, a new computational tool. Compared with other genomic AI models, SQUID is more consistent, reduces background noise, and can yield better predictions regarding critical mutations. The new system aims to bring scientists closer to their findings' true medical implications.
Published Unifying behavioral analysis through animal foundation models



Behavioral analysis can provide a lot of information about the health status or motivations of a living being. A new technology makes it possible for a single deep learning model to detect animal motion across many species and environments. This 'foundational model', called SuperAnimal, can be used for animal conservation, biomedicine, and neuroscience research.
Published Iron meteorites hint that our infant solar system was more doughnut than dartboard



Iron meteorites are remnants of the metallic cores of the earliest asteroids in our solar system. Iron meteorites contain refractory metals, such as iridium and platinum, that formed near the sun but were transported to the outer solar system. New research shows that for this to have happened, the protoplanetary disk of our solar system had to have been doughnut-shaped because the refractory metals could not have crossed the large gaps in a target-shaped disk of concentric rings. The paper suggests that the refractory metals moved outward as the protoplanetary disk rapidly expanded, and were trapped in the outer solar system by Jupiter.
Published Supermassive black hole appears to grow like a baby star



Supermassive black holes pose unanswered questions for astronomers around the world, not least 'How do they grow so big?' Now, an international team of astronomers has discovered a powerful rotating, magnetic wind that they believe is helping a galaxy's central supermassive black hole to grow. The swirling wind, revealed with the help of the ALMA telescope in nearby galaxy ESO320-G030, suggests that similar processes are involved both in black hole growth and the birth of stars.
Published Can AI learn like us?



Scientists have developed a new, more energy-efficient way for AI algorithms to process data. His model may become the basis for a new generation of AI that learns like we do. Notably, these findings may also lend support to neuroscience theories surrounding memory's role in learning.
Published What happens when neutron stars collide?



New simulations show that hot neutrinos created at the interface of merging binary neutron stars are briefy trapped and remain out of equilibrium with the cold cores of the stars for 2 to 3 milliseconds.
Published Astronomers see a massive black hole awaken in real time



In late 2019 the previously unremarkable galaxy SDSS1335+0728 suddenly started shining brighter than ever before. To understand why, astronomers have used data from several space and ground-based observatories, including the European Southern Observatory's Very Large Telescope (ESO's VLT), to track how the galaxy's brightness has varied. In a study out today, they conclude that they are witnessing changes never seen before in a galaxy -- likely the result of the sudden awakening of the massive black hole at its core.
Published Simplicity versus adaptability: Understanding the balance between habitual and goal-directed behaviors



Scientists have proposed a new AI method in which systems of habitual and goal-directed behaviors learn to help each other. Through computer simulations that mimicked the exploration of a maze, the method quickly adapts to changing environments and also reproduced the behavior of humans and animals after they had been accustomed to a certain environment for a long time. The study not only paves the way for the development of systems that adapt quickly and reliably in the burgeoning field of AI, but also provides clues to how we make decisions in the fields of neuroscience and psychology.
Published Custom-made molecules designed to be invisible while absorbing near-infrared light



Researchers used theoretical calculations assessing electron orbital symmetry to synthesize new molecule designed to be both transparent and colorless while absorbing near-infrared light. This compound demonstrates the first systematic approach to producing such materials and have applications in advanced electronics. This compound also shows semiconducting properties.
Published Modified gravity theory: A million light years and still going



In a breakthrough discovery that challenges the conventional understanding of cosmology, scientists have unearthed new evidence that could reshape our perception of the cosmos. New research shows that rotation curves of galaxies stay flat indefinitely far out, corroborating predictions of modified gravity theory as an alternative to dark matter.
Published Scientists develop 3D printed vacuum system that aims to trap dark matter



Using a specially designed 3D printed vacuum system, scientists have developed a way to 'trap' dark matter with the aim of detecting domain walls, this will be a significant step forwards in unravelling some of the mysteries of the universe.
Published Pair of merging quasars at cosmic dawn



Astronomers have discovered a double-record-breaking pair of quasars. Not only are they the most distant pair of merging quasars ever found, but also the only pair confirmed in the bygone era of the Universe's earliest formation.
Published Investigating the origins of the crab nebula



A team of scientists used NASA's James Webb Space Telescope to parse the composition of the Crab Nebula, a supernova remnant located 6,500 light-years away in the constellation Taurus.
Published Researchers use large language models to help robots navigate



A technique can plan a trajectory for a robot using only language-based inputs. While it can't outperform vision-based approaches, it could be useful in settings that lack visual data to use for training.
Published High-precision measurements challenge our understanding of Cepheids



Scientists have clocked the speed of Cepheid stars -- 'standard candles' that help us measure the size of the universe -- with unprecedented precision, offering exciting new insights about them.
Published Pair plasmas found in deep space can now be generated in the lab



Researchers have experimentally generated high-density relativistic electron-positron pair-plasma beams by producing two to three orders of magnitude more pairs than previously reported.
Published Quantum data assimilation: A quantum leap in weather prediction



Data assimilation is an important mathematical discipline in earth sciences, particularly in numerical weather prediction (NWP). However, conventional data assimilation methods require significant computational resources. To address this, researchers developed a novel method to solve data assimilation on quantum computers, significantly reducing the computation time. The findings of the study have the potential to advance NWP systems and will inspire practical applications of quantum computers for advancing data assimilation.
Published NASA's Roman mission gets cosmic 'sneak peek' from supercomputers



Researchers used supercomputers to create nearly 4 million simulated images depicting the cosmos.
Published Wind from black holes may influence development of surrounding galaxies



Clouds of gas in a distant galaxy are being pushed faster and faster -- at more than 10,000 miles per second -- out among neighboring stars by blasts of radiation from the supermassive black hole at the galaxy's center. It's a discovery that helps illuminate the way active black holes can continuously shape their galaxies by spurring on or snuffing out the development of new stars.