Showing 20 articles starting at article 141
< Previous 20 articles Next 20 articles >
Categories: Mathematics: Modeling, Paleontology: Climate
Published AI for astrophysics: Algorithms help chart the origins of heavy elements



The origin of heavy elements in our universe is theorized to be the result of neutron star collisions, which produce conditions hot and dense enough for free neutrons to merge with atomic nuclei and form new elements in a split-second window of time. Testing this theory and answering other astrophysical questions requires predictions for a vast range of masses of atomic nuclei. Scientists are using machine learning algorithms to successfully model the atomic masses of the entire nuclide chart -- the combination of all possible protons and neutrons that defines elements and their isotopes.
Published Researchers develop a new control method that optimizes autonomous ship navigation



Existing ship control systems using Model Predictive Control for Maritime Autonomous Surface Ships (MASS) do not consider the various forces acting on ships in real sea conditions. Addressing this gap, researchers developed a novel time-optimal control method, that accounts for the real wave loads acting on a ship, enabling effective planning and control of MASS at sea.
Published How do neural networks learn? A mathematical formula explains how they detect relevant patterns



Neural networks have been powering breakthroughs in artificial intelligence, including the large language models that are now being used in a wide range of applications, from finance, to human resources to healthcare. But these networks remain a black box whose inner workings engineers and scientists struggle to understand. Now, a team has given neural networks the equivalent of an X-ray to uncover how they actually learn.
Published Balancing training data and human knowledge makes AI act more like a scientist



When you teach a child how to solve puzzles, you can either let them figure it out through trial and error, or you can guide them with some basic rules and tips. Similarly, incorporating rules and tips into AI training -- such as the laws of physics --could make them more efficient and more reflective of the real world. However, helping the AI assess the value of different rules can be a tricky task.
Published New study reveals insight into which animals are most vulnerable to extinction due to climate change



In a new study, researchers have used the fossil record to better understand what factors make animals more vulnerable to extinction from climate change. The results could help to identify species most at risk today from human-driven climate change.
Published Method rapidly verifies that a robot will avoid collisions



A new safety-check technique can prove with 100 percent accuracy that a planned robot motion will not result in a collision. The method can generate a proof in seconds and does so in a way that can be easily verified by a human.
Published Running performance helped by mathematical research



A new mathematical model has shown, with great precision, the impact that physiological and psychological parameters have on running performance and provides tips for optimized training.
Published New AI model draws treasure maps to diagnose disease



Researchers have developed an artificial intelligence model that can accurately identify tumors and diseases in medical images. The tool draws a map to explain each diagnosis, helping doctors follow its line of reasoning, check for accuracy, and explain the results to patients.
Published Mercury rising: Study sheds new light on ancient volcanoes' environmental impact



Massive volcanic events in Earth's history that released large amounts of carbon into the atmosphere frequently correlate with periods of severe environmental change and mass extinctions. A new method to estimate how much and how rapidly carbon was released by the volcanoes could improve our understanding of the climate response, according to an international team.
Published Microbial viruses act as secret drivers of climate change



Scientists have discovered that viruses that infect microbes contribute to climate change by playing a key role in cycling methane, a potent greenhouse gas, through the environment.
Published Climate change threatens thousands of archaeological sites in coastal Georgia



Thousands of historic and archaeological sites in Georgia are at risk from tropical storm surges, and that number will increase with climate change, according to a new study.
Published Significant glacial retreat in West Antarctica began in 1940s



Among the vast expanse of Antarctica lies the Thwaites Glacier, the world's widest glacier measuring about 80 miles on the western edge of the continent. Despite its size, the massive landform is losing about 50 billion tons of ice more than it is receiving in snowfall, which places it in a precarious position in respect to its stability. Accelerating ice loss has been observed since the 1970s, but it is unclear when this significant melting initiated -- until now. A new study suggests that the significant glacial retreat of two glaciers on the west coast of Antarctica began in the 1940's, likely spurred by climate change.
Published What math tells us about social dilemmas



Human coexistence depends on cooperation. Individuals have different motivations and reasons to collaborate, resulting in social dilemmas, such as the well-known prisoner's dilemma. Scientists now present a new mathematical principle that helps to understand the cooperation of individuals with different characteristics.
Published Improving efficiency, reliability of AI medical summarization tools



Medical summarization, a process that uses artificial intelligence (AI) to condense complex patient information, is currently used in health care settings for tasks such as creating electronic health records and simplifying medical text for insurance claims processing. While the practice is intended to create efficiencies, it can be labor-intensive, according researchers who created a new method to streamline the way AI creates these summaries, efficiently producing more reliable results.
Published Biggest Holocene volcano eruption found by seabed survey



A detailed survey of the volcanic underwater deposits around the Kikai caldera in Japan clarified the deposition mechanisms as well as the event's magnitude. As a result, the research team found that the event 7,300 years ago was the largest volcanic eruption in the Holocene by far.
Published Utah's Bonneville Salt Flats has long been in flux



It has been long assumed that Utah's Bonneville Salt Flats was formed as its ancient namesake lake dried up 13,000 years ago. But new research has gutted that narrative, determining these crusts did not form until several thousand years after Lake Bonneville disappeared, which could have important implications for managing this feature that has been shrinking for decades to the dismay of the racing community and others who revere the saline pan 100 miles west of Salt Lake City. Relying on radiocarbon analysis of pollen found in salt cores, the study concludes the salt began accumulating between 5,400 and 3,500 years ago, demonstrating how this geological feature is not a permanent fixture on the landscape.
Published Plasma scientists develop computer programs that could reduce the cost of microchips and stimulate American manufacturing



Fashioned from the same element found in sand and covered by intricate patterns, microchips power smartphones, augment appliances and aid the operation of cars and airplanes. Now, scientists are developing computer simulation codes that will outperform current simulation techniques and aid the production of microchips using plasma, the electrically charged state of matter also used in fusion research. These codes could help increase the efficiency of the manufacturing process and potentially stimulate the renaissance of the chip industry in the United States.
Published Accelerating the discovery of single-molecule magnets with deep learning



Single-molecule magnets (SMMs) are exciting materials. In a recent breakthrough, researchers have used deep learning to predict SMMs from 20,000 metal complexes. The predictions were made solely based on the crystal structures of these metal complexes, thus eliminating the need for time-consuming experiments and complex simulations. As a result, this method is expected to accelerate the development of functional materials, especially for high-density memory and quantum computing devices.
Published Study identifies distinct brain organization patterns in women and men



Researchers have developed a powerful new artificial intelligence model that can distinguish between male and female brains.
Published New chip opens door to AI computing at light speed



Engineers have developed a new chip that uses light waves, rather than electricity, to perform the complex math essential to training AI. The chip has the potential to radically accelerate the processing speed of computers while also reducing their energy consumption.