Showing 20 articles starting at article 761
< Previous 20 articles Next 20 articles >
Categories: Chemistry: Biochemistry, Mathematics: Modeling
Published A new mathematical language for biological networks



Researchers are presenting a novel concept for the mathematical modeling of genetic interactions in biological systems. The team has successfully identified master regulators within the context of an entire genetic network. The research results provide a coherent theoretical framework for analyzing biological networks.
Published Accounting for plastic persistence can minimize environmental impacts



Researchers have developed a sustainability metric for the ecological design of plastic products that have low persistence in the environment. Adhering to this metric could provide substantial environmental and societal benefits, according to a new study.
Published Fastest swimming insect could inspire uncrewed boat designs



Whirligig beetles, the world's fastest-swimming insect, achieve surprising speeds by employing a strategy shared by fast-swimming marine mammals and waterfowl, according to a new study that rewrites previous explanations of the physics involved.
Published Inhalable sensors could enable early lung cancer detection



Using a new technology, diagnosing lung cancer could become as easy as inhaling a sensor and then taking a urine test that reveals whether a tumor is present.
Published Asbestos: The size and shape of inhaled nanofibers could be exclusively responsible for the development of pulmonary fibrosis



The pathogenic potential of inhaling the inert fibrous nanomaterials used in thermal insulation (such as asbestos or fiberglass) is actually connected not to their chemical composition, but instead to their geometrical characteristics and size. This was revealed by a study conducted on glass nanofibers.
Published Engineers invent octopus-inspired technology that can deceive and signal



With a split-second muscle contraction, the greater blue-ringed octopus can change the size and color of the namesake patterns on its skin for purposes of deception, camouflage and signaling. Researchers have drawn inspiration from this natural wonder to develop a technological platform with similar capabilities for use in a variety of fields, including the military, medicine, robotics and sustainable energy.
Published High-performance stretchable solar cells



Engineers have succeeded in implementing a stretchable organic solar cell by applying a newly developed polymer material that demonstrated the world's highest photovoltaic conversion efficiency (19%) while functioning even when stretched for more than 40% of its original state. This new conductive polymer has high photovoltaic properties that can be stretched like rubber. The newly developed polymer is expected to play a role as a power source for next-generation wearable electronic devices.
Published Path-following performance of autonomous ships



With recent requirements for reducing greenhouse gas emissions of autonomous ships, an emerging body of research is focused on assessing the path-following performance of maritime autonomous surface ships (MASS) at low speeds under adverse weather conditions. To combat the poor accuracy of traditional methods, in a new study, researchers investigated the path-following performance of MASS using a free-running computational fluid dynamics model. Their findings can help ensure safer autonomous navigation with reduced propulsion power.
Published Nature-inspired advanced materials achieves 99.6% solar reflectivity



Scientific researchers draw inspiration from nature's brilliance as they seek to develop transformative solutions to unresolved challenges.
Published Using electricity, scientists find promising new method of boosting chemical reactions



Chemists found a way to use electricity to boost a type of chemical reaction often used in synthesizing new candidates for pharmaceutical drugs. The research is an advance in the field of electrochemistry and shows a path forward to designing and controlling reactions -- and making them more sustainable.
Published New method illuminates druggable sites on proteins



Scientists develop a new, high-resolution technique for finding potential therapeutic targets on proteins in living cells. The findings could lead to more targeted therapeutics for nearly any human disease.
Published Aptamers: lifesavers; ion shields: aptamer guardians



Aptamers, nucleic acids capable of selectively binding to viruses, proteins, ions, small molecules, and various other targets, are garnering attention in drug development as potential antibody substitutes for their thermal and chemical stability as well as ability to inhibit specific enzymes or target proteins through three-dimensional binding. They also hold promise for swift diagnoses of colon cancer and other challenging diseases by targeting elusive biomarkers. Despite their utility, these aptamers are susceptible to easy degradation by multiple enzymes, presenting a significant challenge.
Published Molecules exhibit non-reciprocal interactions without external forces



Researchers have discovered that molecules experience non-reciprocal interactions without external forces. Fundamental forces such as gravity and electromagnetism are reciprocal, where two objects are attracted to each other or are repelled by each other. In our everyday experience, however, interactions don t seem to follow this reciprocal law.
Published Revolutionary nanodrones enable targeted cancer treatment



A research team has unveiled a remarkable breakthrough in cancer treatment.
Published Are diamonds GaN's best friend? Revolutionizing transistor technology



A research team has fabricated a gallium nitride (GaN) transistor using diamond, which of all natural materials has the highest thermal conductivity on earth, as a substrate, and they succeeded in increasing heat dissipation by more than two times compared with conventional transistors. The transistor is expected to be useful not only in the fields of 5G communication base stations, weather radar, and satellite communications, but also in microwave heating and plasma processing.
Published Unconventional magnets: Stress reduces frustration



An international research team recently demonstrated how magnetism can be actively changed by pressure.
Published Could an electric nudge to the head help your doctor operate a surgical robot?



People who received gentle electric currents on the back of their heads learned to maneuver a robotic surgery tool in virtual reality and then in a real setting much more easily than people who didn't receive those nudges, a new study shows.
Published Using AI, researchers identify a new class of antibiotic candidates



Using artificial intelligence, researchers discovered a class of compounds that can kill methicillin-resistant Staphylococcus aureus (MRSA), a drug-resistant bacterium that causes more than 10,000 deaths in the U.S. each year.
Published Large language models validate misinformation



In a recent study, researchers systematically tested an early version of ChatGPT's understanding of statements in six categories: facts, conspiracies, controversies, misconceptions, stereotypes, and fiction.
Published New strategy reveals 'full chemical complexity' of quantum decoherence



Scientists have developed a method to extract the spectral density for molecules in solvent using simple resonance Raman experiments -- a method that captures the full complexity of chemical environments.