Showing 20 articles starting at article 381
< Previous 20 articles Next 20 articles >
Categories: Chemistry: Inorganic Chemistry, Mathematics: General
Published Let it glow: Scientists develop new approach to detect 'forever chemicals' in water



Researchers have created a new way to detect 'forever chemical' pollution in water, via a luminescent sensor.
Published New insight into frictionless surfaces is slippery slope to energy-efficient technology



Scientists have made an insight into superlubricity, where surfaces experience extremely low levels of friction. This could benefit future technologies by reducing energy lost to friction by moving parts.
Published Study reveals a reaction at the heart of many renewable energy technologies



Chemists have mapped how proton-coupled electron transfers happen at the surface of an electrode. Their results could help researchers design more efficient fuel cells, batteries, or other energy technologies.
Published Squishy, metal-free magnets to power robots and guide medical implants



'Soft robots,' medical devices and implants, and next-generation drug delivery methods could soon be guided with magnetism -- thanks to a metal-free magnetic gel developed by researchers. Carbon-based, magnetic molecules are chemically bonded to the molecular network of a gel, creating a flexible, long-lived magnet for soft robotics.
Published Cheap substitute for expensive metal in an industrially common chemical reaction



Researchers have helped minimize the cost of an important class of chemical transformations: converting nitriles into primary amines. Their experimental protocol uses a cheap nickel catalyst instead of an expensive noble metal, is convenient to conduct, and works for a broad range of starting materials. This work is an important advance in sustainable chemistry that might help lower the cost of producing nylon and many other everyday products.
Published Physicists identify overlooked uncertainty in real-world experiments



The rules of statistical physics address the uncertainty about the state of a system that arises when that system interacts with its environment. But they've long missed another kind. In a new paper, researchers argue that uncertainty in the thermodynamic parameters themselves -- built into equations that govern the energetic behavior of the system -- may also influence the outcome of an experiment.
Published Core-shell 'chemical looping' boosts efficiency of greener approach to ethylene production



Oxidative coupling of methane (OCM) is now one step closer to leaving the lab and entering the real world. Researchers have developed an OCM catalyst that exceeds 30 percent when it comes to the production of ethylene.
Published New catalytic technique creates key component of incontinence drug in less time



Researchers have developed a unique catalyst that promises to revolutionize drug synthesis. It overcomes a common problem associated with the production of drugs from ketones. Using their catalyst, the researchers synthesized a key component of the commonly used incontinence drug oxybutynin. Their results underscore the potential of the catalyst to improve drug discovery and development.
Published Capturing greenhouse gases with the help of light



Researchers use light-reactive molecules to influence the acidity of a liquid and thereby capture of carbon dioxide. They have developed a special mixture of different solvents to ensure that the light-reactive molecules remain stable over a long period of time. Conventional carbon capture technologies are driven by temperature or pressure differences and require a lot of energy. This is no longer necessary with the new light-based process.
Published Bulky additives could make cheaper solar cells last longer



An insight into preventing perovskite semiconductors from degrading quickly could help enable solar cells estimated to be two to four times cheaper than today's thin-film solar panels.
Published Molecularly designing polymer networks to control sound damping



The world is filled with a myriad of sounds and vibrations -- the gentle tones of a piano drifting down the hall, the relaxing purr of a cat laying on your chest, the annoying hum of the office lights. Imagine being able to selectively tune out noises of a certain frequency. Researchers have now synthesized polymer networks with two distinct architectures and crosslink points capable of dynamically exchanging polymer strands to understand how the network connectivity and bond exchange mechanisms govern the overall damping behavior of the network. The incorporation of dynamic bonds into the polymer network demonstrates excellent damping of sound and vibrations at well-defined frequencies.
Published Towards realizing eco-friendly and high-performance thermoelectric materials



In a new study, environmentally benign inverse-perovskites with high energy conversion efficiency have been reported by scientists with potential for practical application as thermoelectric materials (TEMs). Addressing the limitations typically faced with TEMs, such as insufficient energy conversion efficiency and environmental toxicity due to heavy elements, the new TEMs provide a suitable alternative to TEMs based on toxic elements with better thermoelectric properties than conventional eco-friendly TEMs.
Published Highly durable, nonnoble metal electrodes for hydrogen production from seawater



The water electrolysis method, a promising avenue for hydrogen production, relies on substantial freshwater consumption, thereby limiting the regions available with water resources required for water electrolysis . Researchers have developed highly durable electrodes without precious metals to enable direct hydrogen production from seawater.
Published Catalytic combo converts CO2 to solid carbon nanofibers



Scientists have developed a way to convert carbon dioxide (CO2), a potent greenhouse gas, into carbon nanofibers, materials with a wide range of unique properties and many potential long-term uses. Their strategy uses tandem electrochemical and thermochemical reactions run at relatively low temperatures and ambient pressure and could successfully lock carbon away to offset or even achieve negative carbon emissions.
Published Artificial muscle device produces force 34 times its weight



Scientists developed a soft fluidic switch using an ionic polymer artificial muscle that runs with ultra-low power to lift objects 34 times greater than its weight. Its light weight and small size make it applicable to various industrial fields such as soft electronics, smart textiles, and biomedical devices by controlling fluid flow with high precision, even in narrow spaces.
Published Potential solvents identified for building on moon and Mars



Researchers have taken the first steps toward finding liquid solvents that may someday help extract critical building materials from lunar and Martian-rock dust, an important piece in making long-term space travel possible. Using machine learning and computational modeling, researchers have found about half a dozen good candidates for solvents that can extract materials on the moon and Mars usable in 3D printing. The powerful solvents, called ionic liquids, are salts that are in a liquid state.
Published Generating stable qubits at room temperature



Quantum bits, or qubits, can revolutionize computing and sensing systems. However, cryogenic temperatures are required to ensure the stability of qubits. In a groundbreaking study, researchers observed stable molecular qubits of four electron spins at room temperature for the first time by suppressing the mobility of a dye molecule within a metal-organic framework. Their innovative molecular design opens doors to materials that could drive the development of quantum technologies capable of functioning in real-world conditions.
Published First direct imaging of small noble gas clusters at room temperature



Scientists have succeeded in the stabilization and direct imaging of small clusters of noble gas atoms at room temperature. This achievement opens up exciting possibilities for fundamental research in condensed matter physics and applications in quantum information technology. The key to this breakthrough was the confinement of noble gas atoms between two layers of graphene.
Published Making an important industrial synthesis more environmentally friendly



Researchers have resolved a problem that has limited the environmental sustainability of peracid synthesis. By judicious choice of the solvent and light input, approximately room-temperature autoxidation of aldehydes proceeds in a manner that results in industrially useful peracids or carboxylic acids. This work is an important advance in green chemistry that will help minimize the carbon footprint of the chemical industry.
Published Researchers step closer to mimicking nature's mastery of chemistry



In nature, organic molecules are either left- or right-handed, but synthesizing molecules with a specific 'handedness' in a lab is hard to do. Make a drug or enzyme with the wrong 'handedness,' and it just won't work. Now chemists are getting closer to mimicking nature's chemical efficiency through computational modeling and physical experimentation.