Showing 20 articles starting at article 141

< Previous 20 articles        Next 20 articles >

Categories: Chemistry: Thermodynamics, Mathematics: General

Return to the site home page

Chemistry: Thermodynamics Energy: Technology
Published

Permselectivity reveals a cool side of nanopores      (via sciencedaily.com)     Original source 

Researchers investigated the thermal energy changes across nanopores that allow the selective flow of ions. Switching off the flow of ions in one direction led to a cooling effect. The findings have applications in nanofluidic devices and provide insight into the factors governing ion channels in cells. The nanopore material could be tailored to tune the cooling and arrays could be produced to scale up the effect.

Computer Science: General Mathematics: General Mathematics: Modeling Offbeat: Computers and Math Offbeat: General
Published

ChatGPT often won't defend its answers -- even when it is right      (via sciencedaily.com)     Original source 

ChatGPT may do an impressive job at correctly answering complex questions, but a new study suggests it may be absurdly easy to convince the AI chatbot that it's in the wrong.

Chemistry: Inorganic Chemistry Chemistry: Thermodynamics Engineering: Nanotechnology Physics: General Physics: Optics
Published

Polaritons open up a new lane on the semiconductor highway      (via sciencedaily.com)     Original source 

On the highway of heat transfer, thermal energy is moved by way of quantum particles called phonons. But at the nanoscale of today's most cutting-edge semiconductors, those phonons don't remove enough heat. That's why researchers are focused on opening a new nanoscale lane on the heat transfer highway by using hybrid quasiparticles called 'polaritons.'

Chemistry: Thermodynamics
Published

Boiled bubbles jump to carry more heat      (via sciencedaily.com)     Original source 

The topic of water and the way it can move producing water droplets that leap -- propelled by surface tension -- and frost that jumps -- by way of electrostatics -- is a central focus of a group of scientists. Having incorporated the two phases of liquid and solid in the first two volumes of their research, their third volume investigates a third phase, with boiling water.

Mathematics: General Mathematics: Modeling
Published

Mathematics supporting fresh theoretical approach in oncology      (via sciencedaily.com)     Original source 

Mathematics, histopathology and genomics converge to confirm that the most aggressive clear cell renal cell carcinomas display low levels of intratumour heterogeneity, i.e. they contain fewer distinct cell types. The study supports the hypothesis that it would be advisable to apply therapeutic strategies to maintain high levels of cellular heterogeneity within the tumour in order to slow down the evolution of the cancer and improve human survival.  

Chemistry: Thermodynamics Energy: Alternative Fuels Energy: Batteries Environmental: Water
Published

Promising salt for heat storage      (via sciencedaily.com)     Original source 

Salt batteries can store summer heat to be used in winter, but which salt works best for the purpose?

Chemistry: Thermodynamics
Published

Toward sustainable energy applications with breakthrough in proton conductors      (via sciencedaily.com)     Original source 

Donor doping into a mother material with disordered intrinsic oxygen vacancies, instead of the widely used strategy of acceptor doping into a material without oxygen vacancies, can greatly enhance the conductivity and stability of perovskite-type proton conductors at intermediate and low temperatures of 250--400 °C.

Biology: Biochemistry Biology: Cell Biology Biology: General Biology: Microbiology Chemistry: Biochemistry Computer Science: General Engineering: Nanotechnology Mathematics: General Mathematics: Modeling Physics: General
Published

New computer code for mechanics of tissues and cells in three dimensions      (via sciencedaily.com)     Original source 

Biological materials are made of individual components, including tiny motors that convert fuel into motion. This creates patterns of movement, and the material shapes itself with coherent flows by constant consumption of energy. Such continuously driven materials are called 'active matter'. The mechanics of cells and tissues can be described by active matter theory, a scientific framework to understand shape, flows, and form of living materials. The active matter theory consists of many challenging mathematical equations. Scientists have now developed an algorithm, implemented in an open-source supercomputer code, that can for the first time solve the equations of active matter theory in realistic scenarios. These solutions bring us a big step closer to solving the century-old riddle of how cells and tissues attain their shape and to designing artificial biological machines.

Chemistry: Thermodynamics Energy: Alternative Fuels Energy: Technology Environmental: General Geoscience: Environmental Issues
Published

No one-size-fits-all solution for the net-zero grid      (via sciencedaily.com)     Original source 

As power generation from sources like solar and wind increases, along with the introduction of devices such as heat pumps and batteries, a new optimization tool will help the UK plan for a greener electricity network.   The researchers developed an algorithm to model how these smaller networks distributed electricity -- factoring in how local grids could become unbalanced by adding too many heat pumps in a single area or generating more electricity than the grid could accept.  

Computer Science: General Energy: Nuclear Energy: Technology Mathematics: General Mathematics: Modeling Physics: Acoustics and Ultrasound
Published

Nuclear expansion failure shows simulations require change      (via sciencedaily.com)     Original source 

A team of researchers looked back at a model that predicted nuclear power would expand dramatically in order to assess the efficacy of energy policies implemented today.

Chemistry: Thermodynamics Environmental: General Environmental: Water
Published

New tool models viability of closed-loop geothermal systems      (via sciencedaily.com)     Original source 

Researchers have used computer models of closed-loop geothermal systems to determine if they would be economically viable sources of renewable energy. They found that the cost of drilling would need to decrease significantly to hit cost targets.

Chemistry: General Chemistry: Thermodynamics Energy: Technology Environmental: General Geoscience: Earth Science Geoscience: Environmental Issues Geoscience: Geochemistry Offbeat: Earth and Climate Offbeat: General
Published

'Cooling glass' blasts building heat into space      (via sciencedaily.com)     Original source 

Researchers aiming to combat rising global temperatures have developed a new 'cooling glass' that can turn down the heat indoors without electricity by drawing on the cold depths of space. The new technology, a microporous glass coating, can lower the temperature of the material beneath it by 3.5 degrees Celsius at noon, and has the potential to reduce a mid-rise apartment building's yearly carbon emissions by 10 percent.

Chemistry: Inorganic Chemistry Chemistry: Thermodynamics Environmental: General Geoscience: Environmental Issues Geoscience: Severe Weather
Published

New cooling ceramic can enhance energy efficiency for the construction sector and help combat global warming      (via sciencedaily.com)     Original source 

Researchers have made a significant breakthrough in developing a passive radiative cooling (PRC) material. The material, known as cooling ceramic, has achieved high-performance optical properties for energy-free and refrigerant-free cooling generation. Its cost-effectiveness, durability and versatility make it highly suitable for commercialization in numerous applications, particularly in building construction. 

Chemistry: Biochemistry Chemistry: Thermodynamics Engineering: Nanotechnology
Published

Understanding the dynamic behavior of rubber materials      (via sciencedaily.com)     Original source 

Rubber-like materials can exhibit both spring-like and flow-like behaviors simultaneously, which contributes to their exceptional damping abilities. To understand the dynamic viscoelasticity of these materials, researchers have recently developed a novel system that can conduct dynamic mechanical analysis and dynamic micro X-ray computed tomography simultaneously. This technology can enhance our understanding of the microstructure of viscoelastic materials and pave the way for the development of better materials.

Chemistry: Thermodynamics Engineering: Nanotechnology Offbeat: General Physics: General Physics: Optics
Published

'Hot' new form of microscopy examines materials using evanescent waves      (via sciencedaily.com)     Original source 

A team of researchers has built a prototype microscope that does not rely on backscattered radiation, instead uses passive detection of thermally excited evanescent waves. They have examined dielectric materials with passive near-field spectroscopy to develop a detection model to further refine the technique, working to develop a new kind of microscopy for examining nanoscopic material surfaces.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Thermodynamics Computer Science: General Energy: Technology
Published

Researchers develop solid-state thermal transistor for better heat management      (via sciencedaily.com)     Original source 

A team of researchers has unveiled a first-of-its-kind stable and fully solid-state thermal transistor that uses an electric field to control a semiconductor device's heat movement.  The group's study details how the device works and its potential applications. With top speed and performance, the transistor could open new frontiers in heat management of computer chips through an atomic-level design and molecular engineering. The advance could also further the understanding of how heat is regulated in the human body.

Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Thermodynamics Environmental: General Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Stronger, stretchier, self-healing plastic      (via sciencedaily.com)     Original source 

An innovative plastic, stronger and stretchier than the current standard type and which can be healed with heat, remembers its shape and partially biodegradable, has been developed. They created it by adding the molecule polyrotaxane to an epoxy resin vitrimer, a type of plastic. Named VPR, the material can hold its form and has strong internal chemical bonds at low temperatures.

Chemistry: Thermodynamics Environmental: Ecosystems Environmental: General Environmental: Water Geoscience: Environmental Issues
Published

Underground car parks heat up groundwater      (via sciencedaily.com)     Original source 

The heat given off by car engines warms up underground car parks in such a way that the heat passes through the ground into the groundwater. In Berlin alone, enough energy is transferred to the groundwater to supply 14,660 households with heat. According to the researchers, this warming could have long-term effects on groundwater quality. In their study, they also propose a solution. Using geothermal energy and heat pumps, the heat could be extracted from the ground and utilized.

Chemistry: Thermodynamics Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

What a '2D' quantum superfluid feels like to the touch      (via sciencedaily.com)     Original source 

Researchers have discovered how superfluid helium 3He would feel if you could put your hand into it. The interface between the exotic world of quantum physics and classical physics of the human experience is one of the major open problems in modern physics. Nobody has been able to answer this question during the 100-year history of quantum physics.

Chemistry: Thermodynamics Energy: Alternative Fuels Offbeat: General Physics: Optics
Published

In a surprising finding, light can make water evaporate without heat      (via sciencedaily.com)     Original source 

At the interface of water and air, light can, in certain conditions, bring about evaporation without the need for heat, according to a new study.