Showing 20 articles starting at article 261

< Previous 20 articles        Next 20 articles >

Categories: Energy: Batteries, Mathematics: General

Return to the site home page

Energy: Batteries Engineering: Nanotechnology
Published

Novel design helps develop powerful microbatteries      (via sciencedaily.com) 

Translating electrochemical performance of large format batteries to microscale power sources has been a long-standing technological challenge, limiting the ability of batteries to power microdevices, microrobots and implantable medical devices. Researchers have created a high-voltage microbattery (> 9 V), with high-energy and -power density, unparalleled by any existing battery design.

Energy: Batteries
Published

New battery could prevent post-hurricane electric vehicle fires      (via sciencedaily.com) 

A researcher has developed technology that could prevent electric vehicle fires, like those caused by saltwater flooding from Hurricane Ian. The technology, an aqueous battery, replaces the volatile and highly flammable organic solvents found in electric vehicle lithium-ion batteries with saltwater to create a battery that is safer, faster charging, just as powerful and won't short circuit during flooding.

Energy: Batteries
Published

Lithium-sulfur batteries are one step closer to powering the future      (via sciencedaily.com) 

A research team has built and tested a new interlayer to prevent dissolution of the sulfur cathode in lithium-sulfur batteries. This new interlayer increases Li-S cell capacity and maintains it over hundreds of cycles.

Energy: Batteries
Published

Efficient sodium-ion battery anode for energy storage      (via sciencedaily.com) 

Lithium is expensive and limited, necessitating the development of efficient energy storage systems beyond lithium-ion batteries. Sodium is a promising candidate. However, sodium ions, being large and sluggish, hamper sodium-ion battery (SIB) anode performance. Researchers have recently developed pyrolyzed quinacridones, new carbonaceous SIB anode materials, that are efficient, easily prepared, and exhibit excellent electrochemical properties, including high sodium-ion storage performance and cycling stability.

Energy: Batteries
Published

Development of next-generation solid electrolyte technology, 'stable' even when exposed to the atmosphere      (via sciencedaily.com) 

Engineers have announced the development of solid electrolytes with enhanced atmospheric stability.

Mathematics: General Mathematics: Modeling Mathematics: Statistics
Published

Modelling the collective movement of bacteria      (via sciencedaily.com) 

A new paper presents a mathematical model for the motion of bacteria that includes cell division and death, the basic ingredients of the cell cycle.

Energy: Batteries Engineering: Robotics Research
Published

Designing better battery electrolytes      (via sciencedaily.com) 

Scientists give the lay of the land in the quest for electrolytes that could enable revolutionary battery chemistries.

Mathematics: General Mathematics: Modeling
Published

Revealing the complex magnetization reversal mechanism with topological data analysis      (via sciencedaily.com) 

The reliability of data storage and writing speed in advanced magnetic devices depend on drastic, complex changes in microscopic magnetic domain structures. However, it is extremely challenging to quantify these changes, limiting our understanding of magnetic phenomena. To tackle this, researchers developed, using machine learning and topology, an analysis method that quantifies the complexity of the magnetic domain structures, revealing hidden features of magnetization reversal that are hardly seen by human eyes.

Energy: Batteries
Published

Ingestible biobatteries could allow new view of digestive system      (via sciencedaily.com) 

A new biobattery could power ingestible cameras in the small intestine.

Energy: Batteries Engineering: Graphene
Published

New life flashed into lithium-ion anodes      (via sciencedaily.com) 

Chemists use flash Joule heating to recover graphite anodes from spent lithium-ion batteries at a cost of about $118 per ton.

Mathematics: General Mathematics: Modeling
Published

Finding simplicity within complexity      (via sciencedaily.com) 

With the theory that for every action, even those seemingly complex and random, there is a math problem that describes it, a researcher is publishing a new formula that helps find that equation quickly. Yes, he's speeding up science.

Chemistry: Thermodynamics Energy: Batteries
Published

Flameproofing lithium-ion batteries with salt      (via sciencedaily.com) 

A polymer-based electrolyte makes for batteries that keep working -- and don't catch fire -- when heated to over 140 degrees F.

Energy: Batteries
Published

New battery technology has potential to significantly reduce energy storage costs      (via sciencedaily.com) 

Researchers are hoping that a new, low-cost battery which holds four times the energy capacity of lithium-ion batteries and is far cheaper to produce will significantly reduce the cost of transitioning to a decarbonized economy.

Energy: Batteries
Published

X-rays reveal elusive chemistry for better EV batteries      (via sciencedaily.com) 

Scientists used high energy x-rays to investigate the solid-electrolyte interphase, a chemical layer in batteries that's key to stabilizing lithium metal anodes. Chemists unraveled this complex chemical mechanisms that is crucial for boosting energy density.

Energy: Batteries
Published

New manufacturing process produces better, cheaper cathodes for lithium-ion batteries      (via sciencedaily.com) 

Researchers have developed a new method for producing a key component of lithium-ion batteries. The result is a more affordable battery from a faster, less wasteful process that uses less toxic material.

Energy: Batteries
Published

A self-powered ingestible sensor opens new avenues for gut research      (via sciencedaily.com) 

Engineering researchers have developed a battery-free, pill-shaped ingestible biosensing system designed to provide continuous monitoring in the intestinal environment. It gives scientists the ability to monitor gut metabolites in real time, which wasn't possible before. This could unlock a new understanding of intestinal metabolite composition, which significantly impacts human health overall.

Energy: Batteries
Published

Stabilizing lithium-ion batteries with microbially synthesized electrolyte additive      (via sciencedaily.com) 

Lithium-ion batteries with high-energy-density cathodes are necessary to meet the energy demands of next-generation electronics and electric vehicles. At high voltages, however, the battery electrolyte undergoes excessive decomposition, compromising cathode performance. To tackle this, researchers have now synthesized a bio-based, non-toxic additive material that stabilizes the cathode by forming a passivation layer on its surface and suppressing its decomposition. Eco-friendly and low-cost, the novel compound could promote a wider utilization of bio-based resources.

Computer Science: Virtual Reality (VR) Mathematics: General
Published

Math approach may make drug discovery more effective, efficient      (via sciencedaily.com) 

Researchers have devised a computer-based platform for drug discovery that could make the process more effective, more efficient and less costly.

Energy: Batteries
Published

Nanoengineers develop a predictive database for materials      (via sciencedaily.com) 

Nanoengineers have developed an AI algorithm that predicts the structure and dynamic properties of any material -- whether existing or new -- almost instantaneously. Known as M3GNet, the algorithm was used to develop matterverse.ai, a database of more than 31 million yet-to-be-synthesized materials with properties predicted by machine learning algorithms. Matterverse.ai facilitates the discovery of new technological materials with exceptional properties.