Showing 20 articles starting at article 281

< Previous 20 articles        Next 20 articles >

Categories: Energy: Batteries, Mathematics: General

Return to the site home page

Mathematics: General
Published

Using math to better treat cancer      (via sciencedaily.com) 

Researchers have identified a new method for scheduling radiation therapy that could be as much as 22 percent more effective at killing cancer cells than current standard radiation treatment regimens.

Energy: Batteries
Published

Scientists convert waste paper into battery parts for smartphones and electric vehicles      (via sciencedaily.com) 

Scientists have developed a technique to convert waste paper, from single-use packaging and bags, and cardboard boxes, into a crucial component of lithium-ion batteries. Through a process called carbonisation which converts paper into pure carbon, the researchers turned the paper's fibers into electrodes, which can be made into rechargeable batteries that power mobile phones, medical equipment, and electric vehicles.

Energy: Batteries
Published

Engineers solve a mystery on the path to smaller, lighter batteries      (via sciencedaily.com) 

A new discovery could finally usher the development of solid-state lithium batteries, which would be more lightweight, compact, and safe than current lithium batteries. The growth of metallic filaments called dendrites within the solid electrolyte has been a longstanding obstacle, but the new study explains how dendrites form and how to divert them.

Mathematics: General
Published

Moral behavior pays off      (via sciencedaily.com) 

Coupling two approaches of game theory can shed light on how moral norms evolve.

Energy: Batteries
Published

Understanding a cerium quirk could help advance grid-scale energy storage      (via sciencedaily.com) 

An explanation for why flow batteries using the metal cerium in a sulfuric acid electrolyte fall short on voltage could pave the way for better battery chemistry.

Energy: Batteries
Published

Putting the brakes on lithium-ion batteries to prevent fires      (via sciencedaily.com) 

Lithium-ion (Li-ion) batteries are used to power everything from smart watches to electric vehicles, thanks to the large amounts of energy they can store in small spaces. When overheated, however, they're prone to catching fire or even exploding. But recent research offers a possible solution with a new technology that can swiftly put the brakes on a Li-ion battery, shutting it down when it gets too hot.

Energy: Batteries
Published

Previously unseen processes reveal path to better rechargeable battery performance      (via sciencedaily.com) 

To design better rechargeable ion batteries, engineers and chemists have collaborated to combine a powerful new electron microscopy technique and data mining to visually pinpoint areas of chemical and physical alteration within ion batteries.

Energy: Batteries
Published

Water for drinking? Nope, water for batteries      (via sciencedaily.com) 

A research team develops aqueous rechargeable batteries based on zinc anodes. Polymeric artificial interphase to improve battery stability.

Mathematics: General Mathematics: Modeling Mathematics: Puzzles
Published

Mathematicians explain how some fireflies flash in sync      (via sciencedaily.com) 

A new study by mathematicians shows that math borrowed from neuroscience can describe how swarms of these unique insects coordinate their light show, capturing key details about how they behave in the wild.

Energy: Batteries
Published

2D nanosheets as anodes in Li-ion batteries: The answer is in the sheets      (via sciencedaily.com) 

Researchers use titanium diboride nanosheets as anode material in lithium-ion batteries to enable fast charging and extend battery life.

Energy: Batteries
Published

Batteries without critical raw materials      (via sciencedaily.com) 

The market for rechargeable batteries is growing rapidly, but the necessary raw materials are limited. Sodium-ion batteries, for example, could offer an alternative. Researchers have investigated new combinations of electrolyte solutions and electrode materials for this purpose.

Mathematics: General Mathematics: Modeling
Published

Unveiling the dimensionality of complex networks through hyperbolic geometry      (via sciencedaily.com)     Original source 

Reducing redundant information to find simplifying patterns in data sets and complex networks is a scientific challenge in many knowledge fields. Moreover, detecting the dimensionality of the data is still a hard-to-solve problem. A new article presents a method to infer the dimensionality of complex networks through the application of hyperbolic geometrics, which capture the complexity of relational structures of the real world in many diverse domains.

Mathematics: General Mathematics: Modeling Mathematics: Statistics
Published

Mathematical modeling suggests U.S. counties are still unprepared for COVID spikes      (via sciencedaily.com)     Original source 

America was unprepared for the magnitude of the pandemic, which overwhelmed many counties and filled some hospitals to capacity. A new study suggests there may have been a mathematical method, of sorts, to the madness of those early COVID days.

Energy: Batteries
Published

Researchers design next-generation electrolytes for lithium metal batteries      (via sciencedaily.com) 

A team of researchers has discovered a new mechanism to stabilize the lithium metal electrode and electrolyte in lithium metal batteries. This new mechanism, which does not depend on the traditional kinetic approach, has potential to greatly enhance the energy density of batteries.

Mathematics: General Mathematics: Modeling Mathematics: Puzzles
Published

Music class in sync with higher math scores -- but only at higher-income schools      (via sciencedaily.com) 

Music and arts classes are often first on the chopping block when schools face tight budgets and pressure to achieve high scores on standardized tests. But it's precisely those classes that can increase student interest in school and even benefit their math achievement, according to a new study.

Energy: Batteries
Published

Limits of lithium extraction from thermal water      (via sciencedaily.com) 

Pumping up thermal water, separating lithium, and using it to produce batteries for electric mobility -- the idea of lithium as an environmentally compatible and regionally available by-product of geothermal energy plants appears highly promising. However, it has not been clear so far whether domestic lithium extraction is really worthwhile. A team of researchers has now summarized the state of the art, analyzed raw materials markets, and assessed technologies.

Energy: Batteries
Published

Keeping electricity affordable on wireless charging highways      (via sciencedaily.com) 

Efficient pricing will be crucial to minimize energy costs for private operators who provide on-the-highway wireless charging for electric cars -- and for consumers who will use this service, according to new research.

Mathematics: General
Published

Number-crunching mathematical models may give policy makers major headache      (via sciencedaily.com) 

Policy makers assume that adding more detail to mathematical models will produce more accurate predictions, but that's not always the case, a new study shows.

Energy: Batteries
Published

Watching lithium in real time could improve performance of EV battery materials      (via sciencedaily.com) 

Researchers have found that the irregular movement of lithium ions in next-generation battery materials could be reducing their capacity and hindering their performance.

Energy: Batteries
Published

Chemists boost eco-friendly battery performance using catalysts with unconventional phase nanostructures      (via sciencedaily.com) 

The metal-carbon dioxide battery is a promising and environmentally friendly technology, but its energy efficiency is limited. Recently, a research team has discovered an innovative way to overcome this problem by introducing an unconventional phase nanomaterial as a catalyst, boosting battery energy efficiency up to 83.8%. The study reveals a novel design of catalysts for the new generation of meta-gas batteries that can contribute to carbon neutral goals.