Showing 20 articles starting at article 41
< Previous 20 articles Next 20 articles >
Categories: Energy: Batteries, Mathematics: General
Published 'The magic of making electricity from metals and air' The vexing carbonate has achieved it!



Team develops a high-energy, high-efficiency all-solid-state Na-air battery platform.
Published Renewable grid: Recovering electricity from heat storage hits 44% efficiency



Closing in on the theoretical maximum efficiency, devices for turning heat into electricity are edging closer to being practical for use on the grid, according to new research.
Published Iron could be key to less expensive, greener lithium-ion batteries, research finds



Chemistry researchers are hoping to spark a green battery revolution by showing that iron instead of cobalt and nickel can be used as a cathode material in lithium-ion batteries.
Published New milestone for lithium metal batteries



Scientists develop a porous structures for lithium metal batteries.
Published Batteries: Modeling tomorrow's materials today



Which factors determine how quickly a battery can be charged? Microstructural models have helped researchers discover and investigate new electrode materials. When sodium-nickel-manganese oxide is used as cathode material in sodium-ion batteries, simulations reveal modifications of the crystal structure during charging. These modifications lead to an elastic deformation, as a result of which capacity decreases.
Published Math discovery provides new method to study cell activity, aging



New mathematical tools revealing how quickly cell proteins break down are poised to uncover deeper insights into how we age, according to a recently published paper.
Published Scientists use generative AI to answer complex questions in physics



Researchers used generative AI to develop a physics-informed technique to classify phase transitions in materials or physical systems that is much more efficient than existing machine-learning approaches.
Published Carbon-capture batteries developed to store renewable energy, help climate



Researchers are developing battery technologies to fight climate change in two ways, by expanding the use of renewable energy and capturing airborne carbon dioxide. Researchers recently created and tested two different formulations for batteries that store renewable energy; when the energy is later used, an electrochemical reaction converts industrial carbon dioxide emissions into a solid form that has the potential to be used in other products.
Published Making batteries takes a lot of lithium: Some could come from gas well wastewater



A new analysis suggests that if it could be extracted with complete efficiency, lithium from the wastewater of Marcellus shale gas wells could supply up to 40% of the country's demand.
Published Eco-friendly and affordable battery for low-income countries



A battery made from zinc and lignin that can be used over 8000 times. This has been developed with a vision to provide a cheap and sustainable battery solution for countries where access to electricity is limited.
Published Century of statistical ecology reviewed



A special review examines highly-cited papers in statistical ecology. The review, which covers a century of research, details how models and concepts have evolved alongside increasing computational power.
Published Disorder improves battery life



What determines the cycle life of batteries? And, more importantly, how can we extend it? An international research team has discovered that local disorder in the oxide cathode material increases the number of times Li-ion batteries can be charged and discharged.
Published Cost-effective, high-capacity, and cyclable lithium-ion battery cathodes



Charge-recharge cycling of lithium-superrich iron oxide, a cost-effective and high-capacity cathode for new-generation lithium-ion batteries, can be greatly improved by doping with readily available mineral elements.
Published Toxic chemicals can be detected with new AI method



Researchers have developed an AI method that improves the identification of toxic chemicals -- based solely on knowledge of the molecular structure. The method can contribute to better control and understanding of the ever-growing number of chemicals used in society, and can also help reduce the amount of animal tests.
Published New computer algorithm supercharges climate models and could lead to better predictions of future climate change



A study describes a new computer algorithm which can be applied to Earth System Models to drastically reduce the time needed to prepare these in order to make accurate predictions of future climate change. During tests on models used in IPCC simulations, the algorithm was on average 10 times faster at spinning up the model than currently-used approaches, reducing the time taken to achieve equilibrium from many months to under a week.
Published The end of the quantum tunnel



Quantum mechanical effects such as radioactive decay, or more generally: 'tunneling', display intriguing mathematical patterns. Researchers now show that a 40-year-old mathematical discovery can be used to fully encode and understand this structure.
Published From disorder to order: Flocking birds and 'spinning' particles



Researchers have demonstrated that ferromagnetism, an ordered state of atoms, can be induced by increasing particle motility and that repulsive forces between atoms are sufficient to maintain it. The discovery not only extends the concept of active matter to quantum systems but also contributes to the development of novel technologies that rely on the magnetic properties of particles, such as magnetic memory and quantum computing.
Published How electric vehicle drivers can escape range anxiety



Two of the biggest challenges faced by new and potential electric vehicle (EV) drivers are range anxiety and speed of charging, but these shouldn't have to be challenges at all. Researchers discovered that a change in refueling mindset, rather than improving the size or performance of the battery, could be the answer to these concerns.
Published This salt battery harvests osmotic energy where the river meets the sea



Estuaries -- where freshwater rivers meet the salty sea -- are great locations for birdwatching and kayaking. In these areas, waters containing different salt concentrations mix and may be sources of sustainable, 'blue' osmotic energy. Researchers report creating a semipermeable membrane that harvests osmotic energy from salt gradients and converts it to electricity. The new design had an output power density more than two times higher than commercial membranes in lab demonstrations.
Published Critical minerals recovery from electronic waste



A nontoxic separation process recovers critical minerals from electronic scrap waste.