Showing 20 articles starting at article 441

< Previous 20 articles        Next 20 articles >

Categories: Energy: Technology, Mathematics: General

Return to the site home page

Energy: Alternative Fuels Energy: Technology Environmental: General Environmental: Water Geoscience: Environmental Issues
Published

New supply chain model to empower seabound hydrogen economy      (via sciencedaily.com)     Original source 

A team of researchers has created a new supply chain model which could empower the international hydrogen renewable energy industry.

Energy: Alternative Fuels Energy: Fossil Fuels Energy: Nuclear Energy: Technology Physics: General
Published

Demystifying vortex rings in nuclear fusion, supernovae      (via sciencedaily.com)     Original source 

Better understanding the formation of swirling, ring-shaped disturbances -- known as vortex rings -- could help nuclear fusion researchers compress fuel more efficiently, bringing it closer to becoming a viable energy source. A mathematical model linking these vortices with more pedestrian types, like smoke rings, could help engineers control their behavior in power generation and more.

Chemistry: General Chemistry: Inorganic Chemistry Energy: Batteries Energy: Technology
Published

An electric vehicle battery for all seasons      (via sciencedaily.com)     Original source 

Scientists have developed a fluorine-containing electrolyte for lithium-ion batteries whose charging performance remains high in frigid regions and seasons. They also determined why it is so effective.

Biology: Biochemistry Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular Chemistry: General Chemistry: Organic Chemistry Energy: Alternative Fuels Energy: Fossil Fuels Energy: Technology Environmental: General Environmental: Water Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Watch these cells rapidly create protrusions for exploration and movement      (via sciencedaily.com)     Original source 

In order to move, cells must be able to rapidly change shape. A team of researchers show that cells achieve this by storing extra 'skin' in folds and bumps on their surface. This cell surface excess can be rapidly deployed to cover temporary protrusions and then folded away for next time.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Energy: Batteries Energy: Technology Engineering: Graphene Engineering: Nanotechnology
Published

New priming method improves battery life, efficiency      (via sciencedaily.com)     Original source 

Engineers have developed a readily scalable method to optimize a silicon anode priming method that increases lithium-ion battery performance by 22% to 44%.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Energy: Alternative Fuels Energy: Fossil Fuels Energy: Technology Environmental: General Environmental: Water Geoscience: Environmental Issues Geoscience: Geochemistry Physics: Optics
Published

Unlocking the power of photosynthesis for clean energy production      (via sciencedaily.com)     Original source 

Researchers are embarking on a groundbreaking project to mimic the natural process of photosynthesis using bacteria to deliver electrons to a nanocrystal semiconductor photocatalyst. By leveraging the unique properties of microorganisms and nanomaterials, the system has the potential to replace current approaches that derive hydrogen from fossil fuels, revolutionizing the way hydrogen fuel is produced and unlocking a powerful source of renewable energy.

Mathematics: General Mathematics: Modeling
Published

Extracting the best flavor from coffee      (via sciencedaily.com)     Original source 

Researchers explore the role of uneven coffee extraction using a simple mathematical model. They split the coffee into two regions to examine whether uneven flow does in fact make weaker espresso. One of the regions in the model system hosted more tightly packed coffee than the other, which caused an initial disparity in flow resistance. The extraction of coffee decreased the flow resistance further. Understanding the origin of uneven extraction and avoiding or preventing it could enable better brews and substantial financial savings by using coffee more efficiently.

Chemistry: Biochemistry Energy: Alternative Fuels Energy: Technology Physics: General Physics: Optics
Published

Exciton fission: One photon in, two electrons out      (via sciencedaily.com)     Original source 

Photovoltaics, the conversion of light to electricity, is a key technology for sustainable energy. Since the days of Max Planck and Albert Einstein, we know that light as well as electricity are quantized, meaning they come in tiny packets called photons and electrons. In a solar cell, the energy of a single photon is transferred to a single electron of the material, but no more than one. Only a few molecular materials like pentacene are an exception, where one photon is converted to two electrons instead. This excitation doubling, which is called exciton fission, could be extremely useful for high-efficiency photovoltaics, specifically to upgrade the dominant technology based on silicon. Researchers have now deciphered the first step of this process by recording an ultrafast movie of the photon-to-electricity conversion process, resolving a decades-old debate about the mechanism of the process.

Chemistry: Biochemistry Chemistry: Inorganic Chemistry Energy: Technology Engineering: Robotics Research Offbeat: General
Published

'Gluing' soft materials without glue      (via sciencedaily.com)     Original source 

If you're a fan of arts and crafts, you're likely familiar with the messy, sticky, frustration-inducing nature of liquid glues. But researchers now have a brand-new way to weld squishy stuff together without the need for glue at all. They've demonstrated a universal, 'electroadhesion' technique that can adhere soft materials to each other just by running electricity through them.

Chemistry: Biochemistry Chemistry: General Computer Science: General Energy: Technology Engineering: Nanotechnology
Published

Engineers tap into good vibrations to power the Internet of Things      (via sciencedaily.com)     Original source 

In a world hungry for clean energy, engineers have created a new material that converts the simple mechanical vibrations all around us into electricity to power sensors in everything from pacemakers to spacecraft.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Energy: Technology Engineering: Nanotechnology Offbeat: Computers and Math Offbeat: General
Published

Self-folding origami machines powered by chemical reaction      (via sciencedaily.com)     Original source 

Scientists have harnessed chemical reactions to make microscale origami machines self-fold -- freeing them from the liquids in which they usually function, so they can operate in dry environments and at room temperature.

Energy: Technology Environmental: General Geoscience: Environmental Issues Geoscience: Severe Weather
Published

Prolonged power outages, often caused by weather events, hit some parts of the U.S. harder than others      (via sciencedaily.com)     Original source 

New research found that Americans already bearing the brunt of climate change and health inequities are most at risk of impact by a lengthy power outage.

Biology: Biochemistry Biology: Cell Biology Biology: General Biology: Molecular Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Energy: Technology Environmental: General Environmental: Water Geoscience: Environmental Issues Geoscience: Geochemistry Offbeat: Earth and Climate Offbeat: General Offbeat: Plants and Animals
Published

Previously unknown intercellular electricity may power biology      (via sciencedaily.com)     Original source 

Researchers have discovered that the electrical fields and activity that exist through a cell's membrane also exist within and around another type of cellular structure called biological condensates. Like oil droplets floating in water, these structures exist because of differences in density. Their foundational discovery could change the way researchers think about biological chemistry. It could also provide a clue as to how the first life on Earth harnessed the energy needed to arise.

Biology: Biochemistry Mathematics: General Mathematics: Modeling
Published

Unraveling the mathematics behind wiggly worm knots      (via sciencedaily.com)     Original source 

Researchers wanted to understand precisely how blackworms execute tangling and ultrafast untangling movements for a myriad of biological functions. They researched the topology of the tangles. Their research could inform the design of fiber-like, shapeshifting robotics that self-assemble and move in ways that are fast and reversible.

Energy: Technology Offbeat: General
Published

Ingestible 'electroceutical' capsule stimulates hunger-regulating hormone      (via sciencedaily.com)     Original source 

Engineers have shown that by using an ingestible capsule that delivers an electrical current to the cells they can stimulate the release of the hormone ghrelin. This approach could prove useful for treating diseases that involve nausea or loss of appetite, such as anorexia or cachexia.

Energy: Alternative Fuels Energy: Technology
Published

Transforming highways for high-speed travel and energy transport      (via sciencedaily.com)     Original source 

Researchers developed a proof of concept for a superconducting highway that could transport vehicles and electricity, cooling the necessary superconductors with a pipeline of liquid hydrogen. Most magnetic levitation designs feature the superconductor inside the vehicle, which is suspended above a magnetic track. The authors decided to flip that arrangement upside down, putting the superconductor on the ground and giving each vehicle a magnet. The result is a system with multiple uses, placing it within the realm of affordability.

Chemistry: Organic Chemistry Energy: Technology Engineering: Nanotechnology
Published

Cryo-imaging lifts the lid on fuel cell catalyst layers      (via sciencedaily.com)     Original source 

Thanks to a novel combination of cryogenic transmission electron tomography and deep learning, EPFL researchers have provided a first look at the nanostructure of platinum catalyst layers, revealing how they could be optimized for fuel cell efficiency.