Showing 20 articles starting at article 501
< Previous 20 articles Next 20 articles >
Categories: Energy: Technology, Mathematics: General
Published Researchers create breakthrough spintronics manufacturing process that could revolutionize the electronics industry


Researchers have developed a breakthrough process for making spintronic devices that has the potential to create semiconductors chips with unmatched energy efficiency and storage for use in computers, smartphones, and many other electronics.
Published Minimizing electric vehicles' impact on the grid


Some projections show that widespread adoption of electric vehicles might require costly new power plants to meet peak loads in the evening. A new study shows that placing EV charging stations strategic ways and setting up systems to initiate charging at delayed times could lessen or eliminate the need for new power plants.
Published Propeller advance paves way for quiet, efficient electric aviation


Electrification is seen as having an important role to play in the fossil-free aviation of tomorrow. But electric aviation is battling a trade-off dilemma: the more energy-efficient an electric aircraft is, the noisier it gets. Now, researchers have developed a propeller design optimization method that paves the way for quiet, efficient electric aviation.
Published Researcher solves nearly 60-year-old game theory dilemma


A researcher has solved a nearly 60-year-old game theory dilemma called the wall pursuit game, with implications for better reasoning about autonomous systems such as driver-less vehicles.
Published Game-changing high-performance semiconductor material could help slash heat emissions


Researchers have engineered a material with the potential to dramatically cut the amount of heat power plants release into the atmosphere.
Published Researchers develop soft robot that shifts from land to sea with ease


Most animals can quickly transition from walking to jumping to crawling to swimming if needed without reconfiguring or making major adjustments. Most robots cannot. But researchers have now created soft robots that can seamlessly shift from walking to swimming, for example, or crawling to rolling using a bistable actuator made of 3D-printed soft rubber containing shape-memory alloy springs that react to electrical currents by contracting, which causes the actuator to bend. The team used this bistable motion to change the actuator or robot's shape. Once the robot changes shape, it is stable until another electrical charge morphs it back to its previous configuration.
Published Are piezoelectrics good for generating electricity? Perhaps, but we must decide how to evaluate them


A 'best practice' protocol for researchers developing piezoelectric materials has been developed by scientists. The protocol was developed by an international team led by physicists in response to findings that experimental reports lack consistency. The researchers made the shocking discovery that nine out of 10 scientific papers miss experimental information that is crucial to ensure the reproducibility of the reported work.
Published 3D internal structure of rechargeable batteries revealed


Researchers have pioneered a technique to observe the 3D internal structure of rechargeable batteries. This opens up a wide range of areas for the new technique from energy storage and chemical engineering to biomedical applications.
Published Experiment unlocks bizarre properties of strange metals


Physicists are learning more about the bizarre behavior of 'strange metals,' which operate outside the normal rules of electricity.
Published Electrocatalysis under the atomic force microscope


A further development in atomic force microscopy now makes it possible to simultaneously image the height profile of nanometer-fine structures as well as the electric current and the frictional force at solid-liquid interfaces. A team has succeeded in analyzing electrocatalytically active materials and gaining insights that will help optimize catalysts. The method is also potentially suitable for studying processes on battery electrodes, in photocatalysis or on active biomaterials.
Published New kind of transistor could shrink communications devices on smartphones


One month after announcing a ferroelectric semiconductor at the nanoscale thinness required for modern computing components, a team has now demonstrated a reconfigurable transistor using that material. Their work paves the way for single amplifiers that can do the work of multiple conventional amplifiers, among other possibilities.
Published New 'camera' with shutter speed of 1 trillionth of a second sees through dynamic disorder of atoms


Researchers have developed a new 'camera' that sees the local disorder in materials. Its key feature is a variable shutter speed: because the disordered atomic clusters are moving, when the team used a slow shutter, the dynamic disorder blurred out, but when they used a fast shutter, they could see it. The method uses neutrons to measure atomic positions with a shutter speed of around one picosecond, a trillion times faster than normal camera shutters.
Published Electric vehicle batteries could get big boost with new polymer coating


Scientists have developed a polymer coating that could enable longer lasting, more powerful lithium-ion batteries for electric vehicles. The advance opens up a new approach to developing EV batteries that are more affordable and easy to manufacture.
Published Controlling electric double layer dynamics for next generation all-solid-state batteries


Development of all-solid-state batteries is crucial to achieve carbon neutrality. However, their high surface resistance causes these batteries to have low output, limiting their applications. To this end, researchers have employed a novel technique to investigate and modulate electric double layer dynamics at the solid/solid electrolyte interface. The researchers demonstrate unprecedented control of response speed by over two orders of magnitude, a major steppingstone towards realization of commercial all-solid-state batteries.
Published Stick to your lane: Hidden order in chaotic crowds


Mathematical research brings new understanding of crowd formation and behavior.
Published Think you're good at math? Study shows it may be because you had equitable math teachers


A new study finds that high school students identify more with math if they see their math teacher treating everyone in the class equitably, especially in racially diverse schools. While the relationship between teacher equity and math identity was evident across races, there was an interesting exception. Black students, in general, had strong math identities, regardless of their teacher's actions. Learning about the factors that affect student math identity is important because a student's attitude towards the subject influences the courses that they take as well as their future career selections. This study suggests that teachers may have a larger role to play in helping students develop a positive math identity than previously recognized.
Published Extreme fast charging capability in lithium-ion batteries


Lithium-ion batteries dominate among energy storage devices and are the battery of choice for the electric vehicle industry. Improving battery performance is a constant impetus to current research in this field. Towards this end, a group of researchers has synthesized a lithium borate-type aqueous polyelectrolyte binder for graphite anodes. Their new binder helped improve Li-ion diffusion and lower impedance compared to conventional batteries.
Published Artificial Intelligence from a psychologist's point of view


Researchers test cognitive abilities of the language model GPT-3.
Published Corralling ions improves viability of next generation solar cells


Researchers have discovered that channeling ions into defined pathways in perovskite materials improves the stability and operational performance of perovskite solar cells. The finding paves the way for a new generation of lighter, more flexible, and more efficient solar cell technologies suitable for practical use.
Published New method creates material that could create the next generation of solar cells


Perovskites, a family of materials with unique electric properties, show promise for use in a variety fields, including next-generation solar cells. A team of scientists has now created a new process to fabricate large perovskite devices that is more cost- and time-effective than previously possible and that they said may accelerate future materials discovery.