Showing 20 articles starting at article 101

< Previous 20 articles        Next 20 articles >

Categories: Engineering: Graphene, Mathematics: General

Return to the site home page

Engineering: Graphene Offbeat: Computers and Math Offbeat: General Physics: Optics
Published

Tiny electromagnets made of ultra-thin carbon      (via sciencedaily.com)     Original source 

Graphene, that is extremely thin carbon, is considered a true miracle material. An international research team has now added another facet to its diverse properties with new experiments: Experts fired short terahertz pulses at micrometer-sized discs of graphene, which briefly turned these minuscule objects into surprisingly strong magnets. This discovery may prove useful for developing future magnetic switches and storage devices.

Mathematics: General Mathematics: Modeling
Published

Mathematics supporting fresh theoretical approach in oncology      (via sciencedaily.com)     Original source 

Mathematics, histopathology and genomics converge to confirm that the most aggressive clear cell renal cell carcinomas display low levels of intratumour heterogeneity, i.e. they contain fewer distinct cell types. The study supports the hypothesis that it would be advisable to apply therapeutic strategies to maintain high levels of cellular heterogeneity within the tumour in order to slow down the evolution of the cancer and improve human survival.  

Biology: Biochemistry Biology: Cell Biology Biology: General Biology: Microbiology Chemistry: Biochemistry Computer Science: General Engineering: Nanotechnology Mathematics: General Mathematics: Modeling Physics: General
Published

New computer code for mechanics of tissues and cells in three dimensions      (via sciencedaily.com)     Original source 

Biological materials are made of individual components, including tiny motors that convert fuel into motion. This creates patterns of movement, and the material shapes itself with coherent flows by constant consumption of energy. Such continuously driven materials are called 'active matter'. The mechanics of cells and tissues can be described by active matter theory, a scientific framework to understand shape, flows, and form of living materials. The active matter theory consists of many challenging mathematical equations. Scientists have now developed an algorithm, implemented in an open-source supercomputer code, that can for the first time solve the equations of active matter theory in realistic scenarios. These solutions bring us a big step closer to solving the century-old riddle of how cells and tissues attain their shape and to designing artificial biological machines.

Computer Science: General Energy: Nuclear Energy: Technology Mathematics: General Mathematics: Modeling Physics: Acoustics and Ultrasound
Published

Nuclear expansion failure shows simulations require change      (via sciencedaily.com)     Original source 

A team of researchers looked back at a model that predicted nuclear power would expand dramatically in order to assess the efficacy of energy policies implemented today.

Chemistry: Biochemistry Chemistry: Inorganic Chemistry Engineering: Graphene Physics: General Physics: Quantum Physics
Published

Riddle of Kondo effect solved in ultimately thin wires      (via sciencedaily.com)     Original source 

A research team has now directly measured the so-called Kondo effect, which governs the behavior of magnetic atoms surrounded by a sea of electrons: New observations with a scanning tunneling microscope reveal the effect in one-dimensional wires floating on graphene. 

Chemistry: General Energy: Batteries Engineering: Graphene Engineering: Nanotechnology
Published

Template for success: Shaping hard carbon electrodes for next-generation batteries      (via sciencedaily.com)     Original source 

Sodium- and potassium-ion batteries are promising next-generation alternatives to the ubiquitous lithium-ion batteries (LIBs). However, their energy density still lags behind that of LIBs. To tackle this issue, researchers explored an innovative strategy to turn hard carbon into an excellent negative electrode material. Using inorganic zinc-based compounds as a template during synthesis, they prepared nanostructured hard carbon, which exhibits excellent performance in both alternative batteries.       

Chemistry: Biochemistry Engineering: Graphene Engineering: Nanotechnology
Published

Researchers discover new ultra strong material for microchip sensors      (via sciencedaily.com)     Original source 

Researchers have unveiled a remarkable new material with potential to impact the world of material science: amorphous silicon carbide (a-SiC). Beyond its exceptional strength, this material demonstrates mechanical properties crucial for vibration isolation on a microchip. Amorphous silicon carbide is therefore particularly suitable for making ultra-sensitive microchip sensors.

Chemistry: Biochemistry Mathematics: General Offbeat: Computers and Math Offbeat: General Physics: General
Published

Reverse engineering Jackson Pollock      (via sciencedaily.com)     Original source 

Researchers combined physics and machine learning to develop a new 3D-printing technique that can quickly create complex physical patterns -- including replicating a segment of a Pollock painting -- by leveraging the same natural fluid instability that Pollock used in his work.

Engineering: Graphene Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Researchers demonstrate a high-speed electrical readout method for graphene nanodevices      (via sciencedaily.com)     Original source 

Graphene is often referred to as a wonder material for its advantageous qualities. But its application in quantum computers, while promising, is stymied by the challenge of getting accurate measurements of quantum bit states with existing techniques. Now, researchers have developed design guidelines that enable radio-frequency reflectometry to achieve high-speed electrical readouts of graphene nanodevices. 

Chemistry: Biochemistry Energy: Technology Engineering: Graphene Physics: General
Published

From a five-layer graphene sandwich, a rare electronic state emerges      (via sciencedaily.com)     Original source 

When stacked in five layers in a rhombohedral pattern, graphene takes on a rare 'multiferroic' state, exhibiting both unconventional magnetism and an exotic electronic behavior known as ferro-valleytricity.

Engineering: Graphene Physics: General
Published

Scientists discover 'flipping' layers in heterostructures to cause changes in their properties      (via sciencedaily.com)     Original source 

Transition metal dichalcogenide (TMD) semiconductors are special materials that have long fascinated researchers with their unique properties. For one, they are flat, one-atom-thick two-dimensional (2D) materials similar to that of graphene. They are compounds that contain different combinations of the transition metal group (e.g., molybdenum, tungsten) and chalcogen elements (e.g., sulfur, selenium, tellurium).

Computer Science: Quantum Computers Engineering: Graphene Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Twisted science: New quantum ruler to explore exotic matter      (via sciencedaily.com)     Original source 

Researchers have developed a 'quantum ruler' to measure and explore the strange properties of multilayered sheets of graphene, a form of carbon. The work may also lead to a new, miniaturized standard for electrical resistance that could calibrate electronic devices directly on the factory floor, eliminating the need to send them to an off-site standards laboratory.   

Computer Science: Quantum Computers Mathematics: General Mathematics: Modeling Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Machine learning used to probe the building blocks of shapes      (via sciencedaily.com)     Original source 

Applying machine learning to find the properties of atomic pieces of geometry shows how AI has the power to accelerate discoveries in maths.

Chemistry: Biochemistry Chemistry: Organic Chemistry Engineering: Graphene
Published

Graphene oxide reduces the toxicity of Alzheimer's proteins      (via sciencedaily.com)     Original source 

A probable early driver of Alzheimer's disease is the accumulation of molecules called amyloid peptides. These cause cell death, and are commonly found in the brains of Alzheimer’s patients. Researchers have now shown that yeast cells that accumulate these misfolded amyloid peptides can recover after being treated with graphene oxide nanoflakes.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Energy: Technology Engineering: Graphene Engineering: Nanotechnology
Published

Researchers dynamically tune friction in graphene      (via sciencedaily.com)     Original source 

The friction on a graphene surface can be dynamically tuned using external electric fields, according to researchers.

Biology: Biochemistry Biology: Cell Biology Biology: Microbiology Computer Science: Artificial Intelligence (AI) Mathematics: General Mathematics: Modeling
Published

Sperm swimming is caused by the same patterns that are believed to dictate zebra stripes      (via sciencedaily.com)     Original source 

Patterns of chemical interactions are thought to create patterns in nature such as stripes and spots. This new study shows that the mathematical basis of these patterns also governs how sperm tail moves.

Mathematics: General Mathematics: Puzzles
Published

Machine learning unravels mysteries of atomic shapes      (via sciencedaily.com) 

New research has used machine learning to find the properties of atomic pieces of geometry, in pioneering work that could drive the development of new results in mathematics.

Chemistry: Organic Chemistry Energy: Alternative Fuels Energy: Fossil Fuels Engineering: Graphene
Published

Efficient fuel-molecule sieving using graphene      (via sciencedaily.com) 

A research team has successfully developed a new method that can prevent the crossover of large fuel molecules and suppress the degradation of electrodes in advanced fuel cell technology using methanol or formic acid. The successful sieving of the fuel molecules is achieved via selective proton transfers due to steric hindrance on holey graphene sheets that have chemical functionalization and act as proton-exchange membranes.

Chemistry: General Chemistry: Inorganic Chemistry Energy: Batteries Energy: Technology Engineering: Graphene Physics: General
Published

One-atom-thick ribbons could improve batteries, solar cells and sensors      (via sciencedaily.com) 

Researchers created nanoribbons made of phosphorus and tiny amounts of arsenic, which they found were able to conduct electricity at temperatures above -140 degrees Celsius, while retaining the highly useful properties of the phosphorus-only ribbons.