Computer Science: Artificial Intelligence (AI) Computer Science: General Engineering: Robotics Research Mathematics: Modeling Offbeat: Computers and Math Physics: Optics Physics: Quantum Physics
Published

Self-supervised AI learns physics to reconstruct microscopic images from holograms      (via sciencedaily.com) 

Researchers have unveiled an artificial intelligence-based model for computational imaging and microscopy without training with experimental objects or real data. The team introduced a self-supervised AI model nicknamed GedankenNet that learns from physics laws and thought experiments. Informed only by the laws of physics that universally govern the propagation of electromagnetic waves in space, the researchers taught their AI model to reconstruct microscopic images using only random artificial holograms -- synthesized solely from 'imagination' without relying on any real-world experiments, actual sample resemblances or real data.

Computer Science: Artificial Intelligence (AI) Computer Science: General Computer Science: Virtual Reality (VR) Engineering: Robotics Research
Published

Modified virtual reality tech can measure brain activity      (via sciencedaily.com) 

The research team at The University of Texas at Austin created a noninvasive electroencephalogram (EEG) sensor that they installed in a Meta VR headset that can be worn comfortably for long periods. The EEG measures the brain's electrical activity during the immersive VR interactions.

Energy: Alternative Fuels Engineering: Robotics Research Geoscience: Environmental Issues Physics: Optics
Published

New photocatalytic system converts carbon dioxide to valuable fuel more efficiently than natural photosynthesis      (via sciencedaily.com) 

A research team recently developed a stable artificial photocatalytic system that is more efficient than natural photosynthesis. The new system mimics a natural chloroplast to convert carbon dioxide in water into methane, a valuable fuel, very efficiently using light. This is a promising discovery, which could contribute to the goal of carbon neutrality.

Computer Science: Artificial Intelligence (AI) Engineering: Robotics Research
Published

Robots cause company profits to fall -- at least at first      (via sciencedaily.com) 

Researchers have found that robots can have a 'U-shaped' effect on profits: causing profit margins to fall at first, before eventually rising again. The researchers studied industry data from the UK and 24 other European countries between 1995 and 2017, and found that at low levels of adoption, robots have a negative effect on profit margins. But at higher levels of adoption, robots can help increase profits.

Engineering: Robotics Research
Published

Robotic grippers offer unprecedented combo of strength and delicacy      (via sciencedaily.com) 

New robotic grippers are flexible enough to handle soft and fragile objects as well as heavier ones.

Biology: Evolutionary Mathematics: General Mathematics: Modeling Mathematics: Puzzles
Published

Scientists uncover a surprising connection between number theory and evolutionary genetics      (via sciencedaily.com) 

An interdisciplinary team of mathematicians, engineers, physicists, and medical scientists has uncovered an unexpected link between pure mathematics and genetics, that reveals key insights into the structure of neutral mutations and the evolution of organisms.

Computer Science: Artificial Intelligence (AI) Computer Science: General Engineering: Robotics Research
Published

Reinforcement learning allows underwater robots to locate and track objects underwater      (via sciencedaily.com) 

A team has shown that reinforcement learning -i.e., a neural network that learns the best action to perform at each moment based on a series of rewards- allows autonomous vehicles and underwater robots to locate and carefully track marine objects and animals.

Computer Science: Artificial Intelligence (AI) Engineering: Robotics Research
Published

This 3D printed gripper doesn't need electronics to function      (via sciencedaily.com) 

This soft robotic gripper is not only 3D printed in one print, it also doesn't need any electronics to work.

Computer Science: Artificial Intelligence (AI) Engineering: Robotics Research Offbeat: Computers and Math
Published

Researchers develop low-cost sensor to enhance robots' sense of touch      (via sciencedaily.com) 

Researchers have developed an L3 F-TOUCH sensor to enhance tactile capabilities in robots, allowing it to 'feel' objects and adjust its grip accordingly.

Computer Science: Artificial Intelligence (AI) Engineering: Robotics Research Mathematics: Modeling Offbeat: Computers and Math
Published

A simpler method for learning to control a robot      (via sciencedaily.com) 

A new machine-learning technique can efficiently learn to control a robot, leading to better performance with fewer data.

Computer Science: Artificial Intelligence (AI) Engineering: Robotics Research Offbeat: Computers and Math
Published

Robotic hand rotates objects using touch, not vision      (via sciencedaily.com) 

Inspired by the effortless way humans handle objects without seeing them, engineers have developed a new approach that enables a robotic hand to rotate objects solely through touch, without relying on vision.

Computer Science: Artificial Intelligence (AI) Engineering: Robotics Research
Published

Robot preachers get less respect, fewer donations      (via sciencedaily.com) 

As artificial intelligence expands across more professions, robot preachers and AI programs offer new means of sharing religious beliefs, but they may undermine credibility and reduce donations for religious groups that rely on them.

Computer Science: Artificial Intelligence (AI) Engineering: Robotics Research
Published

Allowing robots to explore on their own      (via sciencedaily.com) 

Scientists have developed a suite of robotic systems and planners enabling robots to explore more quickly, probe the darkest corners of unknown environments, and create more accurate and detailed maps. The systems allow robots to do all this autonomously, finding their way and creating a map without human intervention.

Computer Science: Artificial Intelligence (AI) Engineering: Robotics Research Offbeat: Computers and Math
Published

A faster way to teach a robot      (via sciencedaily.com) 

A new technique enables a human to efficiently fine-tune a robot that failed to complete a desired task with very little effort on the part of the human. Their system uses algorithms, counterfactual explanations, and feedback from the user to generate synthetic data it uses to quickly fine-tune the robot.

Computer Science: Artificial Intelligence (AI) Engineering: Robotics Research
Published

Bot inspired by baby turtles can swim under the sand      (via sciencedaily.com) 

This robot can swim under the sand and dig itself out too, thanks to two front limbs that mimic the oversized flippers of turtle hatchlings. It's the only robot that is able to travel in sand at a depth of 5 inches. It can also travel at a speed of 1.2 millimeters per second--roughly 4 meters, or 13 feet, per hour. This may seem slow but is comparable to other subterranean animals like worms and clams.

Computer Science: Artificial Intelligence (AI) Engineering: Robotics Research
Published

Robotics: New skin-like sensors fit almost everywhere      (via sciencedaily.com) 

Researchers have developed an automatic process for making soft sensors. These universal measurement cells can be attached to almost any kind of object. Applications are envisioned especially in robotics and prosthetics.

Engineering: Robotics Research Offbeat: Computers and Math
Published

ROSE: Revolutionary, nature-inspired soft embracing robotic gripper      (via sciencedaily.com) 

Soft robotic grippers could greatly increase productivity in many fields. However, currently existing designs are overly complex and expensive. A research team has developed ROSE, a novel embracing soft gripper inspired by the blooming and closing of rose flowers. Bearing a surprisingly simple, inexpensive, and scalable design, ROSE can pick up many kinds of objects without damaging them, even in challenging environments and conditions.