Showing 20 articles starting at article 61
< Previous 20 articles Next 20 articles >
Categories: Engineering: Nanotechnology, Mathematics: General
Published A railroad of cells



Looking under the microscope, a group of cells slowly moves forward in a line, like a train on the tracks. The cells navigate through complex environments. A new approach now shows how they do this and how they interact with each other.
Published Researchers film energy materials as they form



Shooting a movie in the lab requires special equipment. Especially when the actors are molecules -- invisible to the naked eye -- reacting with each other. 'Imagine trying to film tiny lava flows during a volcanic eruption. Your smartphone camera wouldn't be up to the job.
Published Novel method for measuring nano/microplastic concentrations in soil using spectroscopy



Current techniques for measuring nano/microplastic (N/MP) concentrations in soil require the soil organic matter content to be separated and have limited resolution for analyzing N/MPs sized <1 m. Therefore, researchers have developed a novel yet simple method to measure N/MP concentration in different soil types using spectroscopy at two wavelengths. This method does not require the soil to be separated in order to detect the N/MPs and can accurately quantify N/MPs regardless of their size.
Published Golden ball mills as green catalysts



A gold-coated milling vessel for ball mills proved to be a real marvel: without any solvents or environmentally harmful chemicals, the team was able to use it to convert alcohols into aldehydes. The catalytic reaction takes place at the gold surface and is mechanically driven. The vessel can be reused multiple times. 'This opens up new prospects for the use of gold in catalysis and shows how traditional materials can contribute to solving modern environmental problems in an innovative way,' says Borchardt.
Published Nano-immunotherapy developed to improve lung cancer treatment



Researchers have developed a new nanomedicine therapy that delivers anticancer drugs to lung cancer cells and enhances the immune system's ability to fight cancer. The team showed promising results for the new therapy in cancer cells in the lab and in mouse lung tumor models, with potential applications for improving care and outcomes for patients with tumors that have failed to respond to traditional immunotherapy.
Published Self-assembling and disassembling swarm molecular robots via DNA molecular controller



Researchers have succeeded in developing a DNA-based molecular controller. Crucially, this controller enables the autonomous assembly and disassembly of molecular robots, as opposed to manually directing it.
Published Nanosized blocks spontaneously assemble in water to create tiny floating checkerboards



Researchers have engineered nanosized cubes that spontaneously form a two-dimensional checkerboard pattern when dropped on the surface of water. The work presents a simple approach to create complex nanostructures through a technique called self-assembly.
Published Swimming microrobots deliver cancer-fighting drugs to metastatic lung tumors in mice



Engineers have developed microscopic robots, known as microrobots, capable of swimming through the lungs to deliver cancer-fighting medication directly to metastatic tumors. This approach has shown promise in mice, where it inhibited the growth and spread of tumors that had metastasized to the lungs, thereby boosting survival rates compared to control treatments.
Published Quantum dots and metasurfaces: Deep connections in the nano world



A team has developed printable, highly efficient light-emitting metasurfaces.
Published Uncovering the nature of emergent magnetic monopoles



To understand the unique physical phenomena associated with the properties of magnetic hedgehogs and antihedgehogs, which behave as virtual magnetic monopoles and antimonopoles respectively, it is essential to study their intrinsic excitations. In a new study, researchers revealed the dynamical nature of collective excitation modes in hedgehog lattices in itinerant chiral magnets. Their findings serve as the foundation for studying the dynamics of emergent magnetic monopoles in magnets.
Published Peers crucial in shaping boys' confidence in math skills



Boys are good at math, girls not so much? A study has analyzed the social mechanisms that contribute to the gender gap in math confidence. While peer comparisons seem to play a crucial role for boys, girls' subjective evaluations are more likely to be based on objective performance.
Published Splitting hairs: Science of biomechanics to understand of bad hair days



Academics are often accused of 'splitting hairs', but a team has now devised a machine to do just that. We all have a bad hair day from time to time, and split ends are a common problem. However, the science behind this kind of hair damage is poorly understood, which is why scientists are investigating this knotty problem.
Published Nanoparticles: Risk for babies in the womb



Little is yet known about the health effects of nanoparticles on pregnancy. An interdisciplinary team is currently analyzing the risks for babies in the womb. Using a lab model, the researchers were able to determine that certain nanoparticles impair the release of chemical messengers in the placenta and thus the formation of blood vessels.
Published Better farming through nanotechnology



Advanced technologies enable the controlled release of medicine to specific cells in the body. Scientists argue these same technologies must be applied to agriculture if growers are to meet increasing global food demands.
Published Crystal engineering modifies 2D metal halide perovskites into 1D nanowires



Engineers have created a patent-pending method that creates layered perovskite nanowires with exceptionally well-defined and flexible cavities that exhibit a wide range of unusual optical properties beyond conventional perovskites.
Published New model allows a computer to understand human emotions



Researchers have developed a model that enables computers to interpret and understand human emotions, utilizing principles of mathematical psychology. In the future, the model can help the computer to adapt its own behavior and guide an irritated or anxious user in different ways. The implications of such technology are profound, offering a glimpse into a future where computers are not merely tools, but empathetic partners in user interaction.
Published New open-source platform allows users to evaluate performance of AI-powered chatbots



Researchers have developed a platform for the interactive evaluation of AI-powered chatbots such as ChatGPT. A team of computer scientists, engineers, mathematicians and cognitive scientists developed an open-source evaluation platform called CheckMate, which allows human users to interact with and evaluate the performance of large language models (LLMs).
Published Towards next-gen functional materials: direct observation of electron transfer in solids



Nanoscale electron transfer (ET) in solids is fundamental to the development of multifunctional materials. However, ET in solids is not yet clearly understood. Now, researchers achieved a direct observation of solid-state ET through X-ray crystal analysis by fabricating a novel double-walled non-covalent crystalline nanotube, which can absorb electron donor molecules and maintain its crystalline structure during ET. This innovative approach can lead to the design of novel functional materials soon.
Published Unraveling the physics of knitting



A team used experiments and simulations to quantify and predict how knit fabric response can be programmed. By establishing a mathematical theory of knitted materials, the researchers hope that knitting -- and textiles in general -- can be incorporated into more engineering and manufacturing applications.
Published Shining a light on molecules: L-shaped metamaterials can control light direction



Polarized light waves spin clockwise or counterclockwise as they travel, with one direction behaving differently than the other as it interacts with molecules. This directionality, called chirality or handedness, could provide a way to identify and sort specific molecules for use in biomedicine applications, but researchers have had limited control over the direction of the waves -- until now.