Showing 20 articles starting at article 521
< Previous 20 articles Next 20 articles >
Categories: Mathematics: General, Space: Astronomy
Published Webb looks for Fomalhaut's asteroid belt and finds much more



Astronomers used NASA's James Webb Space Telescope to image the warm dust around a nearby young star, Fomalhaut, in order to study the first asteroid belt ever seen outside of our solar system in infrared light. But to their surprise, the dusty structures are much more complex than the asteroid and Kuiper dust belts of our solar system. Overall, there are three nested belts extending out to 14 billion miles (23 billion kilometers) from the star; that's 150 times the distance of Earth from the Sun. The scale of the outermost belt is roughly twice the scale of our solar system's Kuiper Belt of small bodies and cold dust beyond Neptune. The inner belts -- which had never been seen before -- were revealed by Webb for the first time.
Published Hubble follows shadow play around planet-forming disk



The young star TW Hydrae is playing 'shadow puppets' with scientists observing it with NASA's Hubble Space Telescope. In 2017, astronomers reported discovering a shadow sweeping across the face of a vast pancake-shaped gas-and-dust disk surrounding the red dwarf star. The shadow isn't from a planet, but from an inner disk slightly inclined relative to the much larger outer disk -- causing it to cast a shadow. One explanation is that an unseen planet's gravity is pulling dust and gas into the planet's inclined orbit. The young star TW Hydrae is playing 'shadow puppets' with scientists observing it with NASA's Hubble Space Telescope. Now, a second shadow -- playing a game of peek-a-boo -- has emerged in just a few years between observations stored in Hubble's MAST archive. This could be from yet another disk nestled inside the system. The two disks are likely evidence of a pair of planets under construction.
Published Astronomers spot a star swallowing a planet



Scientists have observed a star swallowing a planet for the first time. Earth will meet a similar fate in 5 billion years.
Published Astronomers find distant gas clouds with leftovers of the first stars



Using ESO's Very Large Telescope (VLT), researchers have found for the first time the fingerprints left by the explosion of the first stars in the Universe. They detected three distant gas clouds whose chemical composition matches what we expect from the first stellar explosions. These findings bring us one step closer to understanding the nature of the first stars that formed after the Big Bang.
Published Webb finds water vapor, but from a rocky planet or its star?



Astronomers used NASA's James Webb Space Telescope to study a rocky exoplanet known as GJ 486 b. It is too close to its star to be within the habitable zone, with a surface temperature of about 800 degrees Fahrenheit (430 degrees Celsius). And yet, their observations show hints of water vapor.
Published Astronomers detect 'nearby' black hole devouring a star



Astronomers have discovered a new 'tidal disruption event,' in which the center of a galaxy lights up as its supermassive black hole rips apart a passing star. The outburst is the closest tidal disruption event observed to date, and one of the first to be identified at infrared wavelengths.
Published Superflare with massive, high-velocity prominence eruption



A team of Japanese astronomers used simultaneous ground-based and space-based observations to capture a more complete picture of a superflare on a star. The observed flare started with a very massive, high-velocity prominence eruption. These results give us a better idea of how superflares and stellar prominence eruptions occur.
Published Unraveling the mathematics behind wiggly worm knots



Researchers wanted to understand precisely how blackworms execute tangling and ultrafast untangling movements for a myriad of biological functions. They researched the topology of the tangles. Their research could inform the design of fiber-like, shapeshifting robotics that self-assemble and move in ways that are fast and reversible.
Published Most massive touching stars ever found will eventually collide as black holes



A new study looked at a known binary star (two stars orbiting around a mutual center of gravity), analyzing starlight obtained from a range of ground- and space-based telescopes. The researchers found that the stars, located in a neighboring dwarf galaxy called the Small Magellanic Cloud, are in partial contact and swapping material with each other, with one star currently 'feeding' off the other. They orbit each other every three days and are the most massive touching stars (known as contact binaries) yet observed.
Published Direct image of a black hole expelling a powerful jet



Astronomers have observed, in one image, the shadow of the black hole at the center of the galaxy Messier 87 (M87) and the powerful jet expelled from it. Thanks to this new image, astronomers can better understand how black holes can launch such energetic jets.
Published Astronomers solve the 60-year mystery of quasars -- the most powerful objects in the Universe



Scientists have unlocked one of the biggest mysteries of quasars -- the brightest, most powerful objects in the Universe -- by discovering that they are ignited by galaxies colliding.
Published Medium-sized black holes eat stars like messy toddlers



In new 3D computer simulations, astrophysicists modeled black holes of varying masses and then hurled stars (about the size of our sun) past them to see what might happen. If they exist, intermediate-mass black holes likely devour wayward stars like a messy toddler -- taking a few bites and then flinging the remains across the galaxy.
Published Astrophysicists reveal the nature of dark matter through the study of crinkles in spacetime



Astrophysicists have provided the most direct evidence yet that Dark Matter does not constitute ultramassive particles as is commonly thought but instead comprises particles so light that they travel through space like waves. Their work resolves an outstanding problem in astrophysics first raised two decades ago: why do models that adopt ultramassive Dark Matter particles fail to correctly predict the observed positions and the brightness of multiple images of the same galaxy created by gravitational lensing?
Published Asteroid's comet-like tail Is not made of dust, solar observatories reveal



We have known for a while that asteroid 3200 Phaethon acts like a comet. It brightens and forms a tail when it's near the Sun, and it is the source of the annual Geminid meteor shower, even though comets are responsible for most meteor showers. Scientists had blamed Phaethon's comet-like behavior on dust escaping from the asteroid as it's scorched by the Sun. However, a new study using two NASA solar observatories reveals that Phaethon's tail is not dusty at all but is actually made of sodium gas.
Published Webb reveals early-universe prequel to huge galaxy cluster



Every giant was once a baby, though you may never have seen them at that stage of their development. NASA's James Webb Space Telescope has begun to shed light on formative years in the history of the universe that have thus far been beyond reach: the formation and assembly of galaxies. For the first time, a protocluster of seven galaxies has been confirmed at a distance that astronomers refer to as redshift 7.9, or a mere 650 million years after the big bang. Based on the data collected, astronomers calculated the nascent cluster's future development, finding that it will likely grow in size and mass to resemble the Coma Cluster, a monster of the modern universe.
Published Pioneering research sheds new light on the origins and composition of planet Mars



A new study has uncovered intriguing insights into the liquid core at the centre of Mars, furthering understanding of the planet's formation and evolution.
Published Researchers use AI to discover new planet outside solar system



A research team has confirmed evidence of a previously unknown planet outside of our solar system, and they used machine learning tools to detect it. A recent study by the team showed that machine learning can correctly determine if an exoplanet is present by looking in protoplanetary disks, the gas around newly formed stars. The newly published findings represent a first step toward using machine learning to identify previously overlooked exoplanets.
Published Making better measurements of the composition of galaxies



A study using data from telescopes on Earth and in the sky resolves a problem plaguing astronomers working in the infrared and could help make better observations of the composition of the universe with the James Webb Space Telescope and other instruments.
Published ChatGPT is still no match for humans when it comes to accounting



ChatGPT faced off against students on accounting assessments. Students scored an overall average of 76.7%, compared to ChatGPT's score of 47.4%. On a 11.3% of questions, ChatGPT scored higher than the student average, doing particularly well on AIS and auditing. But the AI bot did worse on tax, financial, and managerial assessments, possibly because ChatGPT struggled with the mathematical processes required for the latter type.
Published Rock, paper, scissors: Searching for stronger nonlocality using quantum computers



In the quantum world particles can instantaneously know about each other's state, even when separated by large distances. This is known as nonlocality. Now, A research group has produced some interesting findings on the Hardy nonlocality that have important ramifications for understanding quantum mechanics and its potential applications in communications.