Showing 20 articles starting at article 41
< Previous 20 articles Next 20 articles >
Categories: Geoscience: Geomagnetic Storms, Mathematics: General
Published Maths: Smart learning software helps children during lockdowns -- and beyond



Intelligent tutoring systems for math problems helped pupils remain or even increase their performance during the coronavirus pandemic, according to a new study. Researchers analyzed data from five million exercises done by around 2,700 pupils in Germany over a period of five years. The study found that particularly lower-performing children benefit if they use the software regularly.
Published What math tells us about social dilemmas



Human coexistence depends on cooperation. Individuals have different motivations and reasons to collaborate, resulting in social dilemmas, such as the well-known prisoner's dilemma. Scientists now present a new mathematical principle that helps to understand the cooperation of individuals with different characteristics.
Published New chip opens door to AI computing at light speed



Engineers have developed a new chip that uses light waves, rather than electricity, to perform the complex math essential to training AI. The chip has the potential to radically accelerate the processing speed of computers while also reducing their energy consumption.
Published Swarming cicadas, stock traders, and the wisdom of the crowd



The springtime emergence of vast swarms of cicadas can be explained by a mathematical model of collective decision-making with similarities to models describing stock market crashes.
Published How does a 'reverse sprinkler' work? Researchers solve decades-old physics puzzle



For decades scientists have been trying to solve Feynman's Sprinkler Problem: How does a sprinkler running in reverse work? Through a series of experiments, a team of mathematicians has figured out how flowing fluids exert forces and move structures, thereby revealing the answer to this long-standing mystery.
Published New method flips the script on topological physics



The branch of mathematics known as topology has become a cornerstone of modern physics thanks to the remarkable -- and above all reliable -- properties it can impart to a material or system. Unfortunately, identifying topological systems, or even designing new ones, is generally a tedious process that requires exactly matching the physical system to a mathematical model. Researchers have demonstrated a model-free method for identifying topology, enabling the discovery of new topological materials using a purely experimental approach.
Published What coffee with cream can teach us about quantum physics



A new advancement in theoretical physics could, one day, help engineers develop new kinds of computer chips that might store information for longer in very small objects.
Published A new mathematical language for biological networks



Researchers are presenting a novel concept for the mathematical modeling of genetic interactions in biological systems. The team has successfully identified master regulators within the context of an entire genetic network. The research results provide a coherent theoretical framework for analyzing biological networks.
Published Rail industry urged to consider safety risks of space weather



Train accidents could be caused by solar storms switching signalling from red to green according to new research examining the impact of space weather. Solar storms can trigger powerful magnetic disturbances on Earth, creating geomagnetically induced currents which could potentially interfere with electricity transmission and distribution grids. A study of two rail lines showed that more serious 'wrong side' failures (red to green) could occur with a weaker solar storm than for 'right side' failures, posing a serious risk which the industry needs to take on board.
Published When is an aurora not an aurora?



While auroras occur at high latitude, the associated phenomena Steve and the picket fence occur farther south and at lower altitude. Their emissions also differ from aurora. A physics graduate student has proposed a physical mechanism behind these emissions, and a rocket launch to test the theory. She argues that an electric field in the upper atmosphere parallel to Earth's magnetic field could explain the green picket fence spectrum and perhaps Steve and the enhanced aurora.
Published ChatGPT often won't defend its answers -- even when it is right



ChatGPT may do an impressive job at correctly answering complex questions, but a new study suggests it may be absurdly easy to convince the AI chatbot that it's in the wrong.
Published Mathematics supporting fresh theoretical approach in oncology



Mathematics, histopathology and genomics converge to confirm that the most aggressive clear cell renal cell carcinomas display low levels of intratumour heterogeneity, i.e. they contain fewer distinct cell types. The study supports the hypothesis that it would be advisable to apply therapeutic strategies to maintain high levels of cellular heterogeneity within the tumour in order to slow down the evolution of the cancer and improve human survival.
Published One of the largest magnetic storms in history quantified: Aurorae covered much of the night sky from the Tropics to the Polar Regions



An international multidisciplinary team consisting of solar physicists, geophysicists, and historians from nine countries analysed observations of an extreme solar-terrestrial storm reported in historical records from February 1872. Their findings confirm that a moderate sunspot group triggered one of the largest magnetic storms ever recorded, almost covering the entire night sky with colourful aurorae in both hemispheres. If such an extreme storm occurred today, it would severely disrupt modern technological infrastructure. Their study emphasizes the importance of looking at historical records in light of modern scientific knowledge.
Published Solar activity likely to peak next year



Researchers have discovered a new relationship between the Sun's magnetic field and its sunspot cycle, that can help predict when the peak in solar activity will occur. Their work indicates that the maximum intensity of solar cycle 25, the ongoing sunspot cycle, is imminent and likely to occur within a year.
Published New computer code for mechanics of tissues and cells in three dimensions



Biological materials are made of individual components, including tiny motors that convert fuel into motion. This creates patterns of movement, and the material shapes itself with coherent flows by constant consumption of energy. Such continuously driven materials are called 'active matter'. The mechanics of cells and tissues can be described by active matter theory, a scientific framework to understand shape, flows, and form of living materials. The active matter theory consists of many challenging mathematical equations. Scientists have now developed an algorithm, implemented in an open-source supercomputer code, that can for the first time solve the equations of active matter theory in realistic scenarios. These solutions bring us a big step closer to solving the century-old riddle of how cells and tissues attain their shape and to designing artificial biological machines.
Published Nuclear expansion failure shows simulations require change



A team of researchers looked back at a model that predicted nuclear power would expand dramatically in order to assess the efficacy of energy policies implemented today.
Published Reverse engineering Jackson Pollock



Researchers combined physics and machine learning to develop a new 3D-printing technique that can quickly create complex physical patterns -- including replicating a segment of a Pollock painting -- by leveraging the same natural fluid instability that Pollock used in his work.
Published The importance of the Earth's atmosphere in creating the large storms that affect satellite communications



Large geomagnetic storms disrupt radio signals and GPS. Now, researchers have identified the previous underestimated role of the ionosphere, a region of Earth's upper atmosphere that contains a high concentration of ions and free electrons, in determining how such storms develop. Understanding the interactions that cause large geomagnetic storms is important because they can disrupt radio signals and GPS. Their findings may help predict storms with the greatest potential consequences.
Published Solar farms in space are possible



It's viable to produce low-cost, lightweight solar panels that can generate energy in space, according to new research.
Published Researchers identify largest ever solar storm in ancient 14,300-year-old tree rings



An international team of scientists have discovered a huge spike in radiocarbon levels 14,300 years ago by analyzing ancient tree-rings found in the French Alps. The radiocarbon spike was caused by a massive solar storm, the biggest ever identified. A similar solar storm today would be catastrophic for modern technological society – potentially wiping out telecommunications and satellite systems, causing massive electricity grid blackouts, and costing us billions. The academics are warning of the importance of understanding such storms to protect our global communications and energy infrastructure for the future.