Showing 20 articles starting at article 121
< Previous 20 articles Next 20 articles >
Categories: Mathematics: General, Paleontology: Climate
Published Decoding past climates through dripstones



A recent study demonstrates how dripstones can be crucial for reconstructing past climates. The new approach can provide a detailed picture of the climate around early human occupations in South Africa.
Published 600 years of tree rings reveal climate risks in California



The San Joaquin Valley in California has experienced vast variability in climate extremes, with droughts and floods that were more severe and lasted longer than what has been seen in the modern record, according to a new study of 600 years of tree rings from the valley.
Published Landscape dynamics determine the evolution of biodiversity on Earth



A landmark study into the geological timescale distribution of sediment and nutrients over 500 million years shows that species biodiversity on Earth is driven by landscape dynamics.
Published Deoxygenation levels similar to today's played a major role in marine extinctions during major past climate change event



Scientists have made a surprising discovery that sheds new light on the role that oceanic deoxygenation (anoxia) played in one of the most devastating extinction events in Earth's history. Their finding has implications for current day ecosystems -- and serves as a warning that marine environments are likely more fragile than apparent. New research, published today in leading international journal Nature Geosciences, suggests that oceanic anoxia played an important role in ecosystem disruption and extinctions in marine environments during the Triassic--Jurassic mass extinction, a major extinction event that occurred around 200 million years ago. Surprisingly however, the study shows that the global extent of euxinia (an extreme form of de-oxygenated conditions) was similar to the present day.
Published New computer code for mechanics of tissues and cells in three dimensions



Biological materials are made of individual components, including tiny motors that convert fuel into motion. This creates patterns of movement, and the material shapes itself with coherent flows by constant consumption of energy. Such continuously driven materials are called 'active matter'. The mechanics of cells and tissues can be described by active matter theory, a scientific framework to understand shape, flows, and form of living materials. The active matter theory consists of many challenging mathematical equations. Scientists have now developed an algorithm, implemented in an open-source supercomputer code, that can for the first time solve the equations of active matter theory in realistic scenarios. These solutions bring us a big step closer to solving the century-old riddle of how cells and tissues attain their shape and to designing artificial biological machines.
Published Deep dive on sea level rise: New modelling gives better predictions on Antarctic ice sheet melt



Using historical records from around Australia, an international team of researchers have put forward the most accurate prediction to date of past Antarctic ice sheet melt, providing a more realistic forecast of future sea level rise. The Antarctic ice sheet is the largest block of ice on earth, containing over 30 million cubic kilometers of water. Hence, its melting could have a devasting impact on future sea levels. To find out just how big that impact might be, the research team turned to the past.
Published Nuclear expansion failure shows simulations require change



A team of researchers looked back at a model that predicted nuclear power would expand dramatically in order to assess the efficacy of energy policies implemented today.
Published Plants that survived dinosaur extinction pulled nitrogen from air



Ancient cycad lineages that survived the extinction of the dinosaurs may have done so by relying on symbiotic bacteria in their roots to fix atmospheric nitrogen. The finding came from an effort to understand ancient atmospheres, but became an insight into plant evolution instead.
Published How salt from the Caribbean affects our climate



Past cold periods such as the Little Ice Age were associated with reduced strength of North Atlantic currents and increased surface salinity in the Caribbean. This was accompanied by disturbances in the distribution of salt to the north leading to longer, stronger cooling phases in the northern hemisphere.
Published How a climate model can illustrate and explain ice-age climate variability



During the last ice age, the last glacial maximum about 20,000 years ago, the climate in the North Atlantic underwent much greater multi-centennial variability than it does in the present warm period. This is supported by evidence found in ice and seafloor cores. Researchers have now shown, based on a climate model, that internal mechanisms such as temperature and salinity distribution in the ocean are driving this multi-centennial variability.
Published Study links changes in global water cycle to higher temperatures



A new study takes an important step toward reconstructing a global history of water over the past 2,000 years. Using geologic and biologic evidence preserved in natural archives -- including 759 different paleoclimate records from globally distributed corals, trees, ice, cave formations and sediments -- the researchers showed that the global water cycle has changed during periods of higher and lower temperatures in the recent past.
Published Reverse engineering Jackson Pollock



Researchers combined physics and machine learning to develop a new 3D-printing technique that can quickly create complex physical patterns -- including replicating a segment of a Pollock painting -- by leveraging the same natural fluid instability that Pollock used in his work.
Published New map of 20th century land use in Britain helps researchers demystify biodiversity change



Researchers have mapped how land use changed across Britain throughout the last century. The new map reveals how and where some 50 per cent of semi-natural grassland was lost, including 90 per cent of the country's lowland meadows and pasture, as the nation intensified its agriculture.
Published Meltwater flowing beneath Antarctic glaciers may be accelerating their retreat



A new Antarctic ice sheet modeling study suggests that meltwater flowing out to sea from beneath Antarctic glaciers is making them lose ice faster.
Published Mystery of volcanic tsunami solved after 373 years



The explosion of the underwater volcano Kolumbo in the Aegean Sea in 1650 triggered a destructive tsunami that was described by historical eye witnesses. A group of researchers has now surveyed Kolumbo's underwater crater with modern imaging technology and reconstructed the historical events. They found that the eyewitness accounts of the natural disaster can only be described by a combination of a landslide followed by an explosive eruption.
Published Climate change likely impacted human populations in the Neolithic and Bronze Age



Human populations in Neolithic Europe fluctuated with changing climates, according to a new study.
Published Sediment core analysis supports new epoch characterized by human impact on planet



Scientists analyzed open-source data to track vegetation changes across North America since the end of the Pleistocene Epoch, and conclude that humans have had as much of an impact on the landscape as the retreat of the glaciers at the end of the Ice Age.
Published Raining cats and dogs: Global precipitation patterns a driver for animal diversity



A team has identified several factors to help answer a fundamental ecological question: why is there a ridiculous abundance of species some places on earth and a scarcity in others? What factors, exactly, drive animal diversity? They discovered that what an animal eats (and how that interacts with climate) shapes Earth's diversity.
Published Light, freshwater sticks to Greenland's east coast



Meltwater that runs along the east coast of Greenland, hardly enters the open ocean before reaching the western side of the island. In the changing climate, fresh water from Greenland and the Arctic could disrupt the circulation in the Atlantic Ocean.
Published New study finds 50-year trend in hurricane escalation linked to climate change



New research by climate scientists indicates that there have been great changes to Atlantic hurricanes in just the past 50 years, with storms developing and strengthening faster.