Showing 20 articles starting at article 1
Categories: Energy: Nuclear, Mathematics: Statistics
Published Artificial intelligence improves lung cancer diagnosis



A team of researchers has created a digital pathology platform based on artificial intelligence. The platform uses new algorithms developed by the team and enables fully automated analysis of tissue sections from lung cancer patients. The platform makes it possible to analyze digitized tissue samples on the computer for lung tumors more quickly and accurately than before.
Published Quenching the intense heat of a fusion plasma may require a well-placed liquid metal evaporator



New fusion simulations of the inside of a tokamak reveal the ideal spot for a 'cave' with flowing liquid lithium is near the bottom by the center stack, as the evaporating metal particles should land in just the right spot to dissipate excess heat from the plasma.
Published New heaviest exotic antimatter nucleus



Scientists studying the tracks of particles streaming from six billion collisions of atomic nuclei at the Relativistic Heavy Ion Collider (RHIC) -- an 'atom smasher' that recreates the conditions of the early universe -- have discovered a new kind of antimatter nucleus, the heaviest ever detected. Composed of four antimatter particles -- an antiproton, two antineutrons, and one antihyperon -- these exotic antinuclei are known as antihyperhydrogen-4.
Published Research shows statistical analysis can detect when ChatGPT is used to cheat on multiple-choice chemistry exams



Research revealed how the use of ChatGPT to cheat on general chemistry multiple-choice exams can be detected through specific statistical methods.
Published World's highest-performance superconducting wire segment



Researchers report that they have fabricated the world's highest-performing high-temperature superconducting wire segment while making the price-performance metric significantly more favorable.
Published Researchers dig deeper into stability challenges of nuclear fusion -- with mayonnaise



Researchers are using mayonnaise to study and address the stability challenges of nuclear fusion by examining the phases of Rayleigh-Taylor instability. Their innovative approach aims to inform the design of more stable fusion capsules, contributing to the global effort to harness clean fusion energy. Their most recent paper explores the critical transitions between elastic and plastic phases in these conditions.
Published Modern behavior explains prehistoric economies



What if the 'Market Economy' always existed? Archaeologists tried to answer this question by researching how much Bronze Age people used to spend to sustain their daily lives. Their results show that, starting at least 3,500 years ago, the spending habits of prehistoric Europeans were not substantially different from what they are today.
Published When allocating scarce resources with AI, randomization can improve fairness



Researchers argue that, in some situations where machine-learning models are used to allocate scarce resources or opportunities, randomizing decisions in a structured way may lead to fairer outcomes.
Published Fresh light on the path to net zero



Researchers have used magnetic fields to reveal the mystery of how light particles split. Scientists are closer to giving the next generation of solar cells a powerful boost by integrating a process that could make the technology more efficient by breaking particles of light photons into small chunks.
Published A new way to make element 116 opens the door to heavier atoms



Researchers have successfully made super-heavy element 116 using a beam of titanium-50. That milestone sets the team up to attempt making the heaviest element yet: 120.
Published Come closer: Titanium-48's nuclear structure changes when observed at varying distances



Researchers have found that titanium-48 changes from a shell model structure to an alpha-cluster structure depending on the distance from the center of the nucleus. The results upend the conventional understanding of nuclear structure and are expected to provide clues to the Gamow theory on the alpha-decay process that occurs in heavy nuclei, which has not been solved for nearly 100 years.
Published When to trust an AI model



A new technique enables huge machine-learning models to efficiently generate more accurate quantifications of their uncertainty about certain predictions. This could help practitioners determine whether to trust the model when it is deployed in real-world settings.
Published Quadrupolar nuclei measured by zero-field NMR



Researchers have achieved a breakthrough in zero-field nuclear magnetic resonance spectroscopy, paving the way towards benchmarking quantum chemistry calculations.
Published Pinpointing coal plants to convert to nuclear energy, considering both practicality and community support



An assessment ranks the feasibility of converting 245 operational coal power plants in the U.S. into advanced nuclear reactors, providing valuable insights for policymakers and utilities to meet decarbonization goals, according to a new study.
Published Diagnosing different forms of dementia now possible using artificial intelligence



Ten million new cases of dementia are diagnosed each year but the presence of different dementia forms and overlapping symptoms can complicate diagnosis and delivery of effective treatments. Now researchers have developed an AI tool that can diagnose ten different types of dementia such as vascular dementia, Lewy body dementia, and frontotemporal dementia, even if they co-occur.
Published What was behind the 2021-2022 energy crisis within Europe?



A team of researchers had already been working with electricity price data for years before Russia's invasion of Ukraine, exploring statistics and developing forecasting methods. Now they zero in on how prices in different countries relate and how countries were affected by the energy crisis and address the interdependencies of different markets. Their approach combines statistical physics and network science, identifying communities and the fundamental spatiotemporal patterns within the electricity price/time data from all countries. The researchers hope their work will strengthen the European perspective in the political debate about electricity markets and prices, because problems like this are best tackled via international cooperation.
Published Nuclear spectroscopy breakthrough could rewrite the fundamental constants of nature



Raising the energy state of an atom's nucleus using a laser, or exciting it, would enable development of the most accurate atomic clocks ever to exist. This has been hard to do because electrons, which surround the nucleus, react easily with light, increasing the amount of light needed to reach the nucleus. By causing the electrons to bond with fluorine in a transparent crystal, UCLA physicists have finally succeeded in exciting the neutrons in a thorium atom's nucleus using a moderate amount of laser light. This accomplishment means that measurements of time, gravity and other fields that are currently performed using atomic electrons can be made with orders of magnitude higher accuracy.
Published Balancing act: Novel wearable sensors and AI transform balance assessment



Traditional methods to assess balance often suffer from subjectivity, aren't comprehensive enough and can't be administered remotely. They also are expensive and require specialized equipment and clinical expertise. Using wearable sensors and advanced machine learning algorithms, researchers offer a practical and cost-effective solution for capturing detailed movement data, essential for balance analysis. This approach is more accessible and can be administered remotely, which could have significant implications for health care, rehabilitation, sports science or other fields where balance assessment is important.
Published Pair plasmas found in deep space can now be generated in the lab



Researchers have experimentally generated high-density relativistic electron-positron pair-plasma beams by producing two to three orders of magnitude more pairs than previously reported.
Published Metal alloys that can take the heat



Complex metal alloys enter a new era of predictive design for aerospace and other high-temperature applications.