Showing 20 articles starting at article 101
< Previous 20 articles Next 20 articles >
Categories: Energy: Nuclear, Mathematics: Statistics
Published Number cruncher calculates whether whales are acting weirdly



We humans can be a scary acquaintance for whales in the wild. This includes marine biologists tagging them with measuring devices to understand them better. These experiences can make whales behave erratically for a while. Such behaviour can affect research quality and highlights an animal ethics dilemma. Now, researchers have figured out how to solve the problems with math.
Published Geologists are using artificial intelligence to predict landslides



Many factors influence where a landslide will occur, including the shape of the terrain, its slope and drainage areas, the material properties of soil and bedrock, and environmental conditions like climate, rainfall, hydrology and ground motion resulting from earthquakes. Geologists have developed a new technique that uses artificial intelligence to better predict where and why landslides may occur could bolster efforts to protect lives and property in some of the world's most disaster-prone areas. The new method improves the accuracy and interpretability of AI-based machine-learning techniques, requires far less computing power and is more broadly applicable than traditional predictive models.
Published New driver for shapes of small quark-gluon plasma drops?



New measurements of how particles flow from collisions of different types of particles at the Relativistic Heavy Ion Collider (RHIC) have provided new insights into the origin of the shape of hot specks of matter generated in these collisions. The results may lead to a deeper understanding of the properties and dynamics of this form of matter, known as a quark-gluon plasma (QGP).
Published Generative AI models are encoding biases and negative stereotypes in their users



In the space of a few months generative AI models, such as ChatGPT, Google's Bard and Midjourney, have been adopted by more and more people in a variety of professional and personal ways. But growing research is underlining that they are encoding biases and negative stereotypes in their users, as well as mass generating and spreading seemingly accurate but nonsensical information. Worryingly, marginalized groups are disproportionately affected by the fabrication of this nonsensical information.
Published Bridging traditional economics and econophysics



How do asset markets work? Which stocks behave similarly? Economists, physicists, and mathematicians work intensively to draw a picture but need to learn what is happening outside their discipline. A new paper now builds a bridge.
Published To boost supply chains, scientists are looking at ways to recover valuable materials from water



Researchers are exploring the different ways of harvesting materials from water.
Published Calculation shows why heavy quarks get caught up in the flow



Theorists have calculated how quickly a melted soup of quarks and gluons -- the building blocks of protons and neutrons -- transfers its momentum to heavy quarks. The calculation will help explain experimental results showing heavy quarks getting caught up in the flow of matter generated in heavy ion collisions.
Published Under pressure: Foundations of stellar physics and nuclear fusion investigated



Research using the world's most energetic laser has shed light on the properties of highly compressed matter -- essential to understanding the structure of giant planets and stars, and to develop controlled nuclear fusion, a process that could harvest carbon-free energy.
Published Effective as a collective: Researchers investigate the swarming behavior of microrobots



Miniaturization is progressing rapidly in just any field and the trend towards the creation of ever smaller units is also prevalent in the world of robot technology. In the future, minuscule robots used in medical and pharmaceutical applications might be able to transport medication to targeted sites in the body. Statistical physics can contribute to the foundations for the development of such technologies.
Published Keeping time with an atomic nucleus



Nuclear clocks could allow scientists to probe the fundamental forces of the universe in the future. Researchers have made a crucial advance in this area as part of an international collaboration.
Published Demystifying vortex rings in nuclear fusion, supernovae



Better understanding the formation of swirling, ring-shaped disturbances -- known as vortex rings -- could help nuclear fusion researchers compress fuel more efficiently, bringing it closer to becoming a viable energy source. A mathematical model linking these vortices with more pedestrian types, like smoke rings, could help engineers control their behavior in power generation and more.
Published Simulation provides images from the carbon nucleus



What does the inside of a carbon atom's nucleus look like? A new study provides a comprehensive answer to this question. In the study, the researchers simulated all known energy states of the nucleus. These include the puzzling Hoyle state. If it did not exist, carbon and oxygen would only be present in the universe in tiny traces. Ultimately, we therefore also owe it our own existence.
Published Software to untangle genetic factors linked to shared characteristics among different species



Scientists have developed a software package to help answer key questions about genetic factors associated with shared characteristics among different species.
Published Shutting down nuclear power could increase air pollution



A new study shows that if U.S. nuclear power plants are retired, the burning of coal, oil, and natural gas to fill the energy gap could cause more than 5,000 premature deaths.
Published Cooking up plasmas with microwaves



Scientists have created plasmas with fusion-suitable densities, using microwave power with low frequency. The research team has identified three important steps in the plasma production: lightning-like gas breakdown, preliminary plasma production, and steady-state plasma. Blasting the microwaves without alignment of Heliotron J's magnetic field created a discharge that ripped electrons from their atoms and produced an especially dense plasma.
Published New type of entanglement lets scientists 'see' inside nuclei


Nuclear physicists have found a new way to see inside nuclei by tracking interactions between particles of light and gluons. The method relies on harnessing a new type of quantum interference between two dissimilar particles. Tracking how these entangled particles emerge from the interactions lets scientists map out the arrangement of gluons. This approach is unusual for making use of entanglement between dissimilar particles -- something rare in quantum studies.
Published Neutrinos made by a particle collider detected


Physicists have detected neutrinos created by a particle collider. The discovery promises to deepen scientists' understanding of the subatomic particles, which were first spotted in 1956 and play a key role in the process that makes stars burn.
Published Nitrate can release uranium into groundwater


A team has experimentally confirmed that nitrate, a compound common in fertilizers and animal waste, can help transport naturally occurring uranium from the underground to groundwater. The new research backs a previous study showing that aquifers contaminated with high levels of nitrate -- including the High Plains Aquifer residing beneath Nebraska -- also contain uranium concentrations far exceeding a threshold set by the Environmental Protection Agency. Uranium concentrations above that EPA threshold have been shown to cause kidney damage in humans, especially when regularly consumed via drinking water.
Published Scientists find a common thread linking subatomic color glass condensate and massive black holes


Atomic nuclei accelerated close to the speed of light become dense walls of gluons known as color glass condensate (CGC). Recent analysis shows that CGC shares features with black holes, enormous conglomerates of gravitons that exert gravitational force across the universe. Both gluons in CGC and gravitons in black holes are organized in the most efficient manner possible for each system's energy and size.
Published Better simulations of neutron scattering


Tripoli-4® is a tool used by researchers to simulate the behaviors of interacting neutrons in 3D space. Recently, researchers have developed eTLE: a next-event simulator which aims to increase Tripoli-4®'s precision using Monte Carlo simulations. New research implements and validates eTLE's reliability.