Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

A chip-scale Titanium-sapphire laser      (via sciencedaily.com)     Original source 

With a single leap from tabletop to the microscale, engineers have produced the world's first practical Titanium-sapphire laser on a chip, democratizing a once-exclusive technology.

Offbeat: General Offbeat: Space Physics: General Physics: Quantum Computing Physics: Quantum Physics Space: Astrophysics Space: Exploration Space: General Space: Structures and Features
Published

Precision instrument bolsters efforts to find elusive dark energy      (via sciencedaily.com)     Original source 

Dark energy -- a mysterious force pushing the universe apart at an ever-increasing rate -- was discovered 26 years ago, and ever since, scientists have been searching for a new and exotic particle causing the expansion. Physicists combined an optical lattice with an atom interferometer to hold atoms in place for up to 70 seconds -- a record for an atom interferometer -- allowing them to more precisely test for deviations from the accepted theory of gravity that could be caused by dark energy particles such as chameleons or symmetrons. Though they detected no anomalies, they're improving the experiment to perform more sensitive tests of gravity, including whether gravity is quantized.

Computer Science: General Mathematics: Statistics
Published

Balancing act: Novel wearable sensors and AI transform balance assessment      (via sciencedaily.com)     Original source 

Traditional methods to assess balance often suffer from subjectivity, aren't comprehensive enough and can't be administered remotely. They also are expensive and require specialized equipment and clinical expertise. Using wearable sensors and advanced machine learning algorithms, researchers offer a practical and cost-effective solution for capturing detailed movement data, essential for balance analysis. This approach is more accessible and can be administered remotely, which could have significant implications for health care, rehabilitation, sports science or other fields where balance assessment is important.

Computer Science: General Computer Science: Quantum Computers Offbeat: Computers and Math Offbeat: General Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Breakthrough may clear major hurdle for quantum computers      (via sciencedaily.com)     Original source 

The potential of quantum computers is currently thwarted by a trade-off problem. Quantum systems that can carry out complex operations are less tolerant to errors and noise, while systems that are more protected against noise are harder and slower to compute with. Now a research team has created a unique system that combats the dilemma, thus paving the way for longer computation time and more robust quantum computers.

Chemistry: General Chemistry: Organic Chemistry Computer Science: Quantum Computers Energy: Alternative Fuels Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

New material puts eco-friendly methanol conversion within reach      (via sciencedaily.com)     Original source 

Researchers have developed innovative, eco-friendly quantum materials that can drive the transformation of methanol into ethylene glycol. This discovery opens up new possibilities for using eco-friendly materials in photocatalysis, paving the way for sustainable chemical production.

Computer Science: Quantum Computers Geoscience: Earth Science Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Quantum entanglement measures Earth rotation      (via sciencedaily.com)     Original source 

Researchers carried out a pioneering experiment where they measured the effect of the rotation of Earth on quantum entangled photons. The work represents a significant achievement that pushes the boundaries of rotation sensitivity in entanglement-based sensors, potentially setting the stage for further exploration at the intersection between quantum mechanics and general relativity.

Chemistry: Inorganic Chemistry Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

A liquid crystal source of photon pairs      (via sciencedaily.com)     Original source 

Spontaneous parametric down-conversion (SPDC), as a source of entangled photons, is of great interest for quantum physics and quantum technology, but so far it could be only implemented in solids. Researchers have demonstrated, for the first time, SPDC in a liquid crystal. The results open a path to a new generation of quantum sources: efficient and electric-field tunable.

Computer Science: Quantum Computers Geoscience: Earth Science Geoscience: Severe Weather Mathematics: Modeling Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Quantum data assimilation: A quantum leap in weather prediction      (via sciencedaily.com)     Original source 

Data assimilation is an important mathematical discipline in earth sciences, particularly in numerical weather prediction (NWP). However, conventional data assimilation methods require significant computational resources. To address this, researchers developed a novel method to solve data assimilation on quantum computers, significantly reducing the computation time. The findings of the study have the potential to advance NWP systems and will inspire practical applications of quantum computers for advancing data assimilation.

Computer Science: General Computer Science: Quantum Computers Offbeat: Computers and Math Offbeat: General Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

New technique could help build quantum computers of the future      (via sciencedaily.com)     Original source 

Researchers have demonstrated a new method that could enable the large-scale manufacturing of optical qubits. The advance could bring us closer to a scalable quantum computer.

Chemistry: Biochemistry Computer Science: General Computer Science: Quantum Computers Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Switching nanomagnets using infrared lasers      (via sciencedaily.com)     Original source 

Physicists have calculated how suitable molecules can be stimulated by infrared light pulses to form tiny magnetic fields. If this is also successful in experiments, the principle could be used in quantum computer circuits.

Chemistry: Inorganic Chemistry Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Perturbations simplify the study of 'super photons'      (via sciencedaily.com)     Original source 

Thousands of particles of light can merge into a type of 'super photon' under suitable conditions. Physicists call such a state a photon Bose-Einstein condensate. Researchers have now shown that this exotic quantum state obeys a fundamental theorem of physics. This finding now allows one to measure properties of photon Bose-Einstein condensates which are usually difficult to access.

Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Novel diamond quantum magnetometer for ambient condition magnetoencephalography      (via sciencedaily.com)     Original source 

A highly sensitive diamond quantum magnetometer utilizing nitrogen-vacancy centers can achieve millimeter-scale resolution magnetoencephalography (MEG). The novel magnetometer, based on continuous-wave optically detected magnetic resonance, marks a significant step towards realizing ambient condition MEG and other practical applications.

Mathematics: Statistics
Published

New machine learning method can better predict spine surgery outcomes      (via sciencedaily.com)     Original source 

Researchers combine AI and mobile health to predict recovery from lumbar spine surgery.

Chemistry: Biochemistry Computer Science: Quantum Computers Mathematics: General Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Groundbreaking progress in quantum physics: How quantum field theories decay and fission      (via sciencedaily.com)     Original source 

An international research team has sparked interest in the scientific community with results in quantum physics. In their current study, the researchers reinterpret the Higgs mechanism, which gives elementary particles mass and triggers phase transitions, using the concept of 'magnetic quivers.'

Chemistry: Biochemistry Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

The coldest lab in New York has new quantum offering      (via sciencedaily.com)     Original source 

Physicists describe the successful creation of a molecular Bose-Einstein condensate (BEC). Made up of dipolar sodium-cesium molecules that were cooled with the help of microwave shielding to just 5 nanoKelvin and lasted for up to two seconds, the new molecular BEC will help scientists explore a number of different quantum phenomena, including new types of superfluidity, and enable the creation of quantum simulators to ecreate the enigmatic properties of complex materials, like solid crystals.

Computer Science: Quantum Computers Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

The thinnest lens on Earth, enabled by excitons      (via sciencedaily.com)     Original source 

Lenses are used to bend and focus light. Normal lenses rely on their curved shape to achieve this effect, but physicists have made a flat lens of only three atoms thick which relies on quantum effects. This type of lens could be used in future augmented reality glasses.

Computer Science: General Computer Science: Quantum Computers Mathematics: Modeling Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Theoretical quantum speedup with the quantum approximate optimization algorithm      (via sciencedaily.com)     Original source 

Researchers demonstrated a quantum algorithmic speedup with the quantum approximate optimization algorithm, laying the groundwork for advancements in telecommunications, financial modeling, materials science and more.