Showing 20 articles starting at article 201
< Previous 20 articles Next 20 articles >
Categories: Computer Science: Quantum Computers, Mathematics: Statistics
Published Breakthrough in Monte Carlo computer simulations


Researchers have developed a highly efficient method to investigate systems with long-range interactions that were previously puzzling to experts. These systems can be gases or even solid materials such as magnets whose atoms interact not only with their neighbors but also far beyond.
Published A new type of quantum bit in semiconductor nanostructures


Researchers have created a quantum superposition state in a semiconductor nanostructure that might serve as a basis for quantum computing. The trick: two optical laser pulses that act as a single terahertz laser pulse.
Published Efficient discovery of improved energy materials by a new AI-guided workflow


Scientists have recently proposed a workflow that can dramatically accelerate the search for novel materials with improved properties. They demonstrated the power of the approach by identifying more than 50 strongly thermally insulating materials. These can help alleviate the ongoing energy crisis, by allowing for more efficient thermoelectric elements, i.e., devices able to convert otherwise wasted heat into useful electrical voltage.
Published Researchers establish criterion for nonlocal quantum behavior in networks


A new theoretical study provides a framework for understanding nonlocality, a feature that quantum networks must possess to perform operations inaccessible to standard communications technology. By clarifying the concept, researchers determined the conditions necessary to create systems with strong, quantum correlations.
Published New superconductors can be built atom by atom


The future of electronics will be based on novel kinds of materials. Sometimes, however, the naturally occurring topology of atoms makes it difficult for new physical effects to be created. To tackle this problem, researchers have now successfully designed superconductors one atom at a time, creating new states of matter.
Published Participating in genetic studies is in your genes



Why do some people take part in genetic studies while others do not? The answer may lie within our genetic makeup. According to a groundbreaking study, people who participate in genetic studies are genetically more likely to do so, leaving detectable 'footprints' in genetics data. This breakthrough equips researchers with the ability to identify and address participation bias, a significant challenge in genetic research.
Published Controlling signal routing in quantum information processing



Routing signals and isolating them against noise and back-reflections are essential in many practical situations in classical communication as well as in quantum processing. In a theory-experimental collaboration, a team has achieved unidirectional transport of signals in pairs of 'one-way streets'. This research opens up new possibilities for more flexible signaling devices.
Published Physicists work to prevent information loss in quantum computing



Nothing exists in a vacuum, but physicists often wish this weren't the case. If the systems that scientists study could be completely isolated from the outside world, things would be a lot easier. Take quantum computing. It's a field that's already drawing billions of dollars in support from tech investors and industry heavyweights including IBM, Google and Microsoft. But if the tiniest vibrations creep in from the outside world, they can cause a quantum system to lose information.
Published Number cruncher calculates whether whales are acting weirdly



We humans can be a scary acquaintance for whales in the wild. This includes marine biologists tagging them with measuring devices to understand them better. These experiences can make whales behave erratically for a while. Such behaviour can affect research quality and highlights an animal ethics dilemma. Now, researchers have figured out how to solve the problems with math.
Published Finding the flux of quantum technology



We interact with bits and bytes everyday -- whether that's through sending a text message or receiving an email. There's also quantum bits, or qubits, that have critical differences from common bits and bytes. These photons -- particles of light -- can carry quantum information and offer exceptional capabilities that can't be achieved any other way. Unlike binary computing, where bits can only represent a 0 or 1, qubit behavior exists in the realm of quantum mechanics. Through "superpositioning," a qubit can represent a 0, a 1, or any proportion between. This vastly increases a quantum computer's processing speed compared to today's computers. Experts are now investigating the inside of a quantum-dot-based light emitter.
Published An easier way to learn quantum processes



Scientists show that even a few simple examples are enough for a quantum machine-learning model, the 'quantum neural networks', to learn and predict the behavior of quantum systems, bringing us closer to a new era of quantum computing.
Published Scientists edge toward scalable quantum simulations on a photonic chip



A system using photonics-based synthetic dimensions could be used to help explain complex natural phenomena.
Published Geologists are using artificial intelligence to predict landslides



Many factors influence where a landslide will occur, including the shape of the terrain, its slope and drainage areas, the material properties of soil and bedrock, and environmental conditions like climate, rainfall, hydrology and ground motion resulting from earthquakes. Geologists have developed a new technique that uses artificial intelligence to better predict where and why landslides may occur could bolster efforts to protect lives and property in some of the world's most disaster-prone areas. The new method improves the accuracy and interpretability of AI-based machine-learning techniques, requires far less computing power and is more broadly applicable than traditional predictive models.
Published Research breakthrough could be significant for quantum computing future



Scientists using one of the world's most powerful quantum microscopes have made a discovery that could have significant consequences for the future of computing. Researchers have discovered a spatially modulating superconducting state in a new and unusual superconductor Uranium Ditelluride (UTe2). This new superconductor may provide a solution to one of quantum computing's greatest challenges.
Published Researchers make a quantum computing leap with a magnetic twist



Scientists and engineers have announced a significant advancement in developing fault-tolerant qubits for quantum computing. In a pair of articles, they report that, in experiments with flakes of semiconductor materials -- each only a single layer of atoms thick -- they detected signatures of 'fractional quantum anomalous Hall' (FQAH) states. The team's discoveries mark a first and promising step in constructing a type of fault-tolerant qubit because FQAH states can host anyons -- strange 'quasiparticles' that have only a fraction of an electron's charge. Some types of anyons can be used to make what are called 'topologically protected' qubits, which are stable against any small, local disturbances.
Published 'Toggle switch' can help quantum computers cut through the noise



What good is a powerful computer if you can't read its output? Or readily reprogram it to do different jobs? People who design quantum computers face these challenges, and a new device may make them easier to solve.
Published Generative AI models are encoding biases and negative stereotypes in their users



In the space of a few months generative AI models, such as ChatGPT, Google's Bard and Midjourney, have been adopted by more and more people in a variety of professional and personal ways. But growing research is underlining that they are encoding biases and negative stereotypes in their users, as well as mass generating and spreading seemingly accurate but nonsensical information. Worryingly, marginalized groups are disproportionately affected by the fabrication of this nonsensical information.
Published Open-source software to speed up quantum research



Quantum technology is expected to fundamentally change many key areas of society. Researchers are convinced that there are many more useful quantum properties and applications to explore than those we know today. A team of researchers has now developed open-source, freely available software that will pave the way for new discoveries in the field and accelerate quantum research significantly.
Published Bridging traditional economics and econophysics



How do asset markets work? Which stocks behave similarly? Economists, physicists, and mathematicians work intensively to draw a picture but need to learn what is happening outside their discipline. A new paper now builds a bridge.
Published New technique in error-prone quantum computing makes classical computers sweat



Today's quantum computers often calculate the wrong answer because of noisy environments that interfere with the quantum entanglement of qubits. IBM Quantum has pioneered a technique that accounts for the noise to achieve reliable results. They tested this error mitigation strategy against supercomputer simulations run by physicists, and for the hardest calculations, the quantum computer bested the supercomputer. This is evidence for the utility of today's noisy quantum computers for performing real-world calculations.