Showing 20 articles starting at article 461
< Previous 20 articles Next 20 articles >
Categories: Environmental: Water, Mathematics: Statistics
Published Discovering the physics behind 300-year-old firefighting methods



Inspired by a 1725 fire engine that pumped water at larger distances and higher speeds than previously possible, authors analyzed the pressure chamber's Windkessel effect to capture the physics behind this widely used, enduring technology. They compared the initial state of the chamber, the rate at which bucket brigades could pour water in (volumetric inflow), the length of time pressure builds, and the effects on output flow rate. Next, the authors plan to examine the physiological Windkessel involved in the heart-aorta system.
Published Health researchers develop software to predict diseases



IntelliGenes analyzes genomic data to discover biomarkers associated with health traits.
Published Groundbreaking discovery enables cost-effective and eco-friendly green hydrogen production



A research team has developed a novel catalyst for the high-efficiency and stable production of high-purity green hydrogen.
Published Translating nuclear waste site data into microbial ecosystem insights



A flagship seven-year study that explores how environmental stresses influence different ecological processes shaping the composition and structure of microbial communities in groundwater has now been published.
Published Efficiently moving urea out of polluted water is coming to reality



Researchers have developed a material to remove urea from water and potentially convert it into hydrogen gas. By building these materials of nickel and cobalt atoms with carefully tailored electronic structures, the group has unlocked the potential to enable these transition metal oxides and hydroxides to selectively oxidize urea in an electrochemical reaction. The team's findings could help use urea in waste streams to efficiently produce hydrogen fuel through the electrolysis process, and could be used to sequester urea from water, maintaining the long-term sustainability of ecological systems, and revolutionizing the water-energy nexus.
Published The heat is on: Scientists discover southern Africa's temps will rise past the rhinos' tolerance



Southern Africa contains the vast majority of the world's remaining populations of both black and white rhinoceroses (80% and 92%, respectively). The region's climate is changing rapidly as a result global warming. Traditional conservation efforts aimed at protecting rhinos have focused on poaching, but until now, there has been no analysis of the impact that climate change may have on the animals. A research team has recently reported that, though the area will be affected by both higher temperatures and changing precipitation, the rhinos are more sensitive to rising temperatures, which will quickly increase above the animals' acceptable maximum threshold.
Published Climate change isn't producing expected increase in atmospheric moisture over dry regions



The warming climate has not lead to an expected increase in atmospheric moisture over arid and semi-arid regions of the world. The finding, which has surprised scientists, indicates that some regions may be even more vulnerable to future wildfires and extreme heat than projected.
Published Let it glow: Scientists develop new approach to detect 'forever chemicals' in water



Researchers have created a new way to detect 'forever chemical' pollution in water, via a luminescent sensor.
Published New AI makes better permafrost maps



New insights from artificial intelligence about permafrost coverage in the Arctic may soon give policy makers and land managers the high-resolution view they need to predict climate-change-driven threats to infrastructure such as oil pipelines, roads and national security facilities.
Published Stalagmites as climate archive



When combined with data from tree-ring records, stalagmites can open up a unique archive to study natural climate fluctuations, a research team has demonstrated. The researchers analyzed the isotopic composition of oxygen in a stalagmite formed from calcareous water in a cave in southern Germany. In conjunction with the data acquired from tree rings, they were able to reconstruct short-term climate fluctuations over centuries and correlate them with historically documented environmental events.
Published A new, rigorous assessment of OpenET accuracy for supporting satellite-based water management



Sustainable water management is an increasing concern in arid regions around the world, and scientists and regulators are turning to remote sensing tools like OpenET to help track and manage water resources. OpenET uses publicly available data produced by NASA and USGS Landsat and other satellite systems to calculate evapotranspiration (ET), or the amount of water lost to the atmosphere through soil evaporation and plant transpiration, at the level of individual fields. This tool has the potential to revolutionize water management, allowing for field-scale operational monitoring of water use, and a new study provides a thorough analysis of the accuracy of OpenET data for various crops and natural land cover types.
Published Chasing the light: Study finds new clues about warming in the Arctic



The Arctic, Earth's icy crown, is experiencing a climate crisis like no other. It's heating up at a furious pace -- four times faster than the rest of our planet. Researchers are pulling back the curtain on the reduction of sunlight reflectivity, or albedo, which is supercharging the Arctic's warming.
Published Study quantifies how aquifer depletion threatens crop yields



Three decades of data have informed a new Nebraska-led study that shows how the depletion of groundwater -- the same that many farmers rely on for irrigation -- can threaten food production amid drought and drier climes. The study found that, due in part to the challenges of extracting groundwater, an aquifer's depletion can curb crop yields even when it appears saturated enough to continue meeting the demands of irrigation.
Published Capturing greenhouse gases with the help of light



Researchers use light-reactive molecules to influence the acidity of a liquid and thereby capture of carbon dioxide. They have developed a special mixture of different solvents to ensure that the light-reactive molecules remain stable over a long period of time. Conventional carbon capture technologies are driven by temperature or pressure differences and require a lot of energy. This is no longer necessary with the new light-based process.
Published Clinical predictive models created by AI are accurate but study-specific, researchers find



Scientists were able to show that statistical models created by artificial intelligence (AI) predict very accurately whether a medication responds in people with schizophrenia. However, the models are highly context-dependent and cannot be generalized.
Published Study uncovers potential origins of life in ancient hot springs



A research team investigated how the emergence of the first living systems from inert geological materials happened on the Earth, more than 3.5 billion years ago. Scientists found that by mixing hydrogen, bicarbonate, and iron-rich magnetite under conditions mimicking relatively mild hydrothermal vent results in the formation of a spectrum of organic molecules, most notably including fatty acids stretching up to 18 carbon atoms in length.
Published Beaches and dunes globally squeezed by roads and buildings



Beaches and dunes globally squeezed by roads and buildings. Beaches and dunes are becoming increasingly trapped between rising sea levels and infrastructure. Researchers found that today, when dropped on a random beach anywhere in the world, you only need to walk 390 meters (on average) to find the nearest road or building. And while that short walking distance may seem convenient if you want a day at the beach, it's bad news for our protection against rising sea levels, drinking water supplies and biodiversity.
Published Highly durable, nonnoble metal electrodes for hydrogen production from seawater



The water electrolysis method, a promising avenue for hydrogen production, relies on substantial freshwater consumption, thereby limiting the regions available with water resources required for water electrolysis . Researchers have developed highly durable electrodes without precious metals to enable direct hydrogen production from seawater.
Published Toxic algae blooms: Study assesses potential health hazards to humans



Water samples from 20 sites were tested using a panel of immortalized human cell lines corresponding to the liver, kidney and brain to measure cytotoxicity. Results show that each control toxin induced a consistent pattern of cytotoxicity in the panel of human cell lines assayed. Known toxins were seen only during blooms. Because cell toxicity was seen in the absence of blooms, it suggests that there might be either emergent toxins or a combination of toxins present at those times. Findings suggest that other toxins with the potential to be harmful to human health may be present in the lagoon.
Published Record heat in 2023 worsened global droughts, floods and wildfires



Record heat across the world profoundly impacted the global water cycle in 2023, contributing to severe storms, floods, megadroughts and bushfires, new research shows.