Showing 20 articles starting at article 681
< Previous 20 articles Next 20 articles >
Categories: Mathematics: Statistics, Offbeat: Plants and Animals
Published Parasitic mites' biting rate may drive transmission of Deformed wing virus in honey bees


Varroa destructor is an ectoparasitic mite that can cause European honey bee colonies to collapse by spreading Deformed wing virus as they feed. A study suggests a relatively small number of mites can contribute to a large number of infected bees.
Published Novel method for assigning workplaces in synthetic populations unveiled


Synthetic populations are computer-generated models that mimic real-world populations in terms of characteristics such as age, gender, and occupation; they are useful when conducting social simulations. In a recent study, researchers developed a new approach to assign workplaces to individuals in a synthetic Japanese population with household information, based on ODI (Origin-Destination-Industry) data. Their efforts will enable more accurate, realistic simulations of the day-time distribution of workers in Japan, helping to improve decision-making and planning.
Published Researchers uncover 92 fossil nests belonging to some of India's largest dinosaurs


The discovery of more than 250 fossilized eggs reveals intimate details about the lives of titanosaurs in the Indian subcontinent, according to a new study.
Published Mummified crocodiles provide insights into mummy-making over time


Crocodiles were mummified in a unique way at the Egyptian site of Qubbat al-Hawa during the 5th Century BC, according to a new study.
Published Blowing bubbles among echidna's tricks to beat the heat



Research into how echidnas might respond to a warming climate has found clever techniques used by the animal to cope with heat, including blowing bubbles to wet its nose tip, with the moisture then evaporating and cooling its blood.
Published Modelling the collective movement of bacteria


A new paper presents a mathematical model for the motion of bacteria that includes cell division and death, the basic ingredients of the cell cycle.
Published AI model proactively predicts if a COVID-19 test might be positive or not


A new study shows machine-learning models trained using simple symptoms, demographic features are effective in predicting COVID-19 infections.
Published New statistical method improves genomic analyzes


A new statistical method provides a more efficient way to uncover biologically meaningful changes in genomic data that span multiple conditions -- such as cell types or tissues.
Published Mathematical modeling suggests U.S. counties are still unprepared for COVID spikes



America was unprepared for the magnitude of the pandemic, which overwhelmed many counties and filled some hospitals to capacity. A new study suggests there may have been a mathematical method, of sorts, to the madness of those early COVID days.
Published Statistical oversight could explain inconsistencies in nutritional research


People often wonder why one nutritional study tells them that eating too many eggs, for instance, will lead to heart disease and another tells them the opposite. The answer to this and other conflicting food studies may lie in the use of statistics, according to a new report.
Published Biomarkers used to track benefits of anti-aging therapies can be misleading, suggests nematode study


Researchers followed the birth and death of tens of thousands of nematode worms using the 'Lifespan Machine', which collects lifespan data at unprecedented statistical resolution. They found that worms have at least two distinct 'biological ages', and that these have consistent correlations between each other, suggesting the existence of an invisible hierarchical structure that regulates the ageing process. The findings challenge the idea of living organisms having a single, universal biological age. It also means mean that biomarkers used to assess biological age can be changed by interventions such as diet, exercise, or drug treatments without actually turning a 'fast ager' into a 'slow ager'. The study calls into question the use of ageing biomarkers -- what exactly are they measuring?
Published New software platform advances understanding of the surface finish of manufactured components


The contact.engineering platform enables users to create a digital twin of a surface and thus to help predict, for example, how quickly it wears out, how well it conducts heat, or how well it adheres to other materials.
Published Healthcare researchers must be wary of misusing AI


A commentary advocates the proper application of artificial intelligence in healthcare and warns of the dangers when machine learning algorithms are misused.
Published New method to identify symmetries in data using Bayesian statistics


Scientists have developed a method to identify symmetries in multi-dimensional data using Bayesian statistical techniques. Bayesian statistics has been in the spotlight in recent years due to improvements in computer performance and its potential applications in artificial intelligence. However, this statistical approach requires complex calculations of integrals, which are often considered approximations only. In their new study, the research team successfully derived new exact integral formulas. Their findings contribute to improving the accuracy of methods to identify data symmetries, possibly extending their applications to wider areas of interest, such as genetic analysis.
Published Idea of ice age 'species pump' in the Philippines boosted by new way of drawing evolutionary trees


A groundbreaking Bayesian method and new statistical analyses of genomic data from geckos in the Philippines shows that during the ice ages, the timing of gecko diversification gives strong statistical support for the first time to the Pleistocene aggregate island complex (PAIC) model of diversification, or 'species pump.'
Published Topology and machine learning reveal hidden relationship in amorphous silicon


Fine-tuning the thermal conductivity of amorphous silicon used in technologies such as solar cells and image sensors should become much easier thanks to the computational topology and machine-learning-assisted discovery of the relationship between nano-scale structures and physical properties.
Published When quantum particles fly like bees


A quantum system with only 51 charged atoms can take on more than two quadrillion different states. Calculating the system's behavior is child's play for a quantum simulator. But verifying the result is almost impossible, even with today's supercomputers. A research team has now shown how these systems can be verified using equations formulated in the 18th century.
Published One particle on two paths: Quantum physics is right


The famous double slit experiment shows that particles can travel on two paths at the same time -- but only by looking at a lot of particles and analysing the results statistically. Now a two-path-interference experiment has been designed that only has to measure one specific particle to prove that it travelled on two paths.
Published Exposure assessment for Deepwater Horizon oil spill: Health outcomes


Mathematicians have developed statistical methods that lay the framework for the crucial first step of determining whether there are any linkages between exposures and health outcomes from the 2010 Deepwater Horizon oil spill, which is considered the largest marine oil spill in the history of the U.S.
Published Machine learning model could better measure baseball players' performance


Researchers have developed a machine learning model that could better measure baseball players' and teams' short- and long-term performance, compared to existing statistical analysis methods for the sport. Drawing on recent advances in natural language processing and computer vision, their approach would completely change, and could enhance, the way the state of a game and a player's impact on the game is measured.