Showing 20 articles starting at article 981

< Previous 20 articles        Next 20 articles >

Categories: Chemistry: Biochemistry, Mathematics: Statistics

Return to the site home page

Chemistry: Biochemistry Chemistry: General
Published

A 'pinch' of mineral salts helps the noncaloric sweeteners go down      (via sciencedaily.com)     Original source 

Perfect noncaloric replacements for sugar and high fructose corn syrup just don't exist yet. For example, some alternatives have a lingering sweet aftertaste and lack a sugar-like mouthfeel, leaving some consumers unsatisfied. Now, researchers propose adding blends of nutritionally important mineral salts to make noncaloric sweeteners seem more like the real thing. Taste-testers indicated that these blends gave zero- and low-calorie drinks a better flavor.

Chemistry: Biochemistry
Published

Video games spark exciting new frontier in neuroscience      (via sciencedaily.com)     Original source 

Researchers have used an algorithm from a video game to gain insights into the behavior of molecules within live brain cells. Researchers used coding tools to build an algorithm that is now used by several labs to gather rich data about brain cell activity. The algorithm was applied to observe molecules clustering together -- which ones, when, where, for how long and how often.

Chemistry: Biochemistry Computer Science: General Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

New technique in error-prone quantum computing makes classical computers sweat      (via sciencedaily.com)     Original source 

Today's quantum computers often calculate the wrong answer because of noisy environments that interfere with the quantum entanglement of qubits. IBM Quantum has pioneered a technique that accounts for the noise to achieve reliable results. They tested this error mitigation strategy against supercomputer simulations run by physicists, and for the hardest calculations, the quantum computer bested the supercomputer. This is evidence for the utility of today's noisy quantum computers for performing real-world calculations.

Chemistry: Biochemistry Chemistry: General Chemistry: Organic Chemistry Environmental: Ecosystems Environmental: General Geoscience: Earth Science Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Preserving forests to protect deep soil from warming      (via sciencedaily.com)     Original source 

An innovative, decade-long experiment in the foothills of California's Sierra Nevada mountains shows carbon stocks buried deep underground are vulnerable to climate change. The findings have implications for mitigating global warming through the natural carbon sinks provided by soil and forests which capture 25% of all carbon emissions.

Chemistry: Biochemistry Engineering: Nanotechnology Environmental: General Geoscience: Earth Science Geoscience: Geology
Published

Researchers describe the melting of gold nanoparticles in gold-bearing fluids in the Earth's crust      (via sciencedaily.com)     Original source 

Gold is a precious metal that has always fascinated humans. From Priam's Treasure to the legend of El Dorado, gold --regarded as the noblest of metals-- has been a symbol of splendour and wealth in many civilizations. Historically, gold deposits were known to form when metal was transported dissolved by hot aqueous solution flows --hydrothermal fluids-- until it accumulated in some areas in the Earth's upper crust. The recent discovery of gold nanoparticles in such mineral deposits has brought some doubts on the validity of the classical model.

Chemistry: Biochemistry Chemistry: Organic Chemistry
Published

New model offers a way to speed up drug discovery      (via sciencedaily.com)     Original source 

A model known as ConPLex can predict whether potential drug molecules will interact with specific protein targets, without having to perform the computationally intensive calculation of the molecules' structures. By applying a language model to protein-drug interactions, researchers can quickly screen large libraries of potential drug compounds.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Chemistry: Thermodynamics
Published

Sustainable technique to manufacture chemicals      (via sciencedaily.com)     Original source 

A newly published study details a novel mechanochemistry method that can produce chemicals using less energy and without the use of solvents that produce toxic waste.

Chemistry: Biochemistry Chemistry: Organic Chemistry
Published

A new way to develop drugs without side effects      (via sciencedaily.com)     Original source 

Have you ever wondered how drugs reach their targets and achieve their function within our bodies? If a drug molecule or a ligand is a message, an inbox is typically a receptor in the cell membrane. One such receptor involved in relaying molecular signals is a G protein-coupled receptor (GPCR). About one-third of existing drugs work by controlling the activation of this protein. Researchers now reveal a new way of activating GPCR by triggering shape changes in the intracellular region of the receptor. This new process can help researchers design drugs with fewer or no side effects.

Chemistry: Biochemistry Computer Science: General Computer Science: Quantum Computers Offbeat: Computers and Math Offbeat: General Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Schrödinger's cat makes better qubits      (via sciencedaily.com)     Original source 

Drawing from Schrodinger's cat thought experiment, scientists have built a 'critical cat code' qubit that uses bosons to store and process information in a way that is more reliable and resistant to errors than previous qubit designs.

Chemistry: Biochemistry Chemistry: Inorganic Chemistry Physics: General Physics: Quantum Physics
Published

Physicists discover an exotic material made of bosons      (via sciencedaily.com)     Original source 

Take a lattice -- a flat section of a grid of uniform cells, like a window screen or a honeycomb -- and lay another, similar lattice above it. But instead of trying to line up the edges or the cells of both lattices, give the top grid a twist so that you can see portions of the lower one through it. This new, third pattern is a moiré, and it's between this type of overlapping arrangement of lattices of tungsten diselenide and tungsten disulfide where physicists found some interesting material behaviors.

Chemistry: Biochemistry Chemistry: Inorganic Chemistry Energy: Nuclear Physics: General Physics: Quantum Physics
Published

Calculation shows why heavy quarks get caught up in the flow      (via sciencedaily.com)     Original source 

Theorists have calculated how quickly a melted soup of quarks and gluons -- the building blocks of protons and neutrons -- transfers its momentum to heavy quarks. The calculation will help explain experimental results showing heavy quarks getting caught up in the flow of matter generated in heavy ion collisions.

Chemistry: Biochemistry Chemistry: Organic Chemistry
Published

Illuminating the molecular ballet in living cells      (via sciencedaily.com)     Original source 

Researchers have developed one of the world's fastest cameras capable of detecting fluorescence from single molecules.

Chemistry: Biochemistry Offbeat: General
Published

House of moveable wooden walls unveiled, promising a cheaper, greener alternative to 'knocking through'.      (via sciencedaily.com)     Original source 

Architects have designed a prototype home constructed with flexible wooden partition walls which can be shifted to meet the changing needs of residents. The invention aims to reduce waste and carbon while also improving living conditions for those who cannot afford expensive refurbishments.

Chemistry: Biochemistry Engineering: Graphene
Published

Unveiling the nanoscale frontier: innovating with nanoporous model electrodes      (via sciencedaily.com)     Original source 

Researchers have introduced a next-generation model membrane electrode that promises to revolutionize fundamental electrochemical research.

Chemistry: Biochemistry Energy: Alternative Fuels Environmental: General Geoscience: Environmental Issues
Published

Record 19.31% efficiency with organic solar cells      (via sciencedaily.com)     Original source 

Researchers have achieved a breakthrough power-conversion efficiency (PCE) of 19.31% with organic solar cells (OSCs), also known as polymer solar cells. This remarkable binary OSC efficiency will help enhance applications of these advanced solar energy devices.

Biology: Biochemistry Biology: Zoology Chemistry: Biochemistry
Published

Biodegradable plastic from sugar cane also threatens the environment      (via sciencedaily.com)     Original source 

Plastic made from cane sugar also threatens the environment. Researchers from the University of Gothenburg have found that perch change their behavior when exposed to so-called bioplastic.

Chemistry: Biochemistry
Published

PAINTing a wound-healing ink into cuts with a 3D-printing pen      (via sciencedaily.com)     Original source 

The body is pretty good at healing itself, though more severe wounds can require bandages or stitches. But researchers have now developed a wound-healing ink that can actively encourage the body to heal by exposing the cut to immune-system vesicles. The ink can be spread into a cut of any shape using a 3D-printing pen, and in mice, the technology nearly completely repaired wounds in just 12 days.

Chemistry: Biochemistry Computer Science: General Computer Science: Quantum Computers Engineering: Nanotechnology Offbeat: Computers and Math Offbeat: General Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

The 'breath' between atoms -- a new building block for quantum technology      (via sciencedaily.com)     Original source 

Researchers have discovered they can detect atomic 'breathing,' or the mechanical vibration between two layers of atoms, by observing the type of light those atoms emitted when stimulated by a laser. The sound of this atomic 'breath' could help researchers encode and transmit quantum information.