Showing 20 articles starting at article 901

< Previous 20 articles        Next 20 articles >

Categories: Chemistry: Inorganic Chemistry, Ecology: General

Return to the site home page

Biology: Biochemistry Biology: General Ecology: Endangered Species Ecology: Extinction Ecology: General Ecology: Nature Ecology: Research Environmental: Biodiversity Environmental: General Geoscience: Environmental Issues
Published

Study identifies boat strikes as a growing cause of manatee deaths in Belize      (via sciencedaily.com)     Original source 

The endangered Antillean manatee faces a growing threat from boat strikes in Belize, according to a new study that raises concerns about the survival of what had been considered a relatively healthy population. Belize hosts a population of around 1,000 manatees. With the growth of tourism in recent decades, however, Belize has seen a substantial increase in boat traffic, making boat strikes an increasingly important cause of manatee deaths and injuries.

Chemistry: General Chemistry: Inorganic Chemistry Geoscience: Geochemistry Physics: General Physics: Optics
Published

X-rays visualize how one of nature's strongest bonds breaks      (via sciencedaily.com)     Original source 

The use of short flashes of X-ray light brings scientists one big step closer toward developing better catalysts to transform the greenhouse gas methane into a less harmful chemical. The result reveals for the first time how carbon-hydrogen bonds of alkanes break and how the catalyst works in this reaction.

Biology: Biochemistry Biology: Cell Biology Biology: Genetics Biology: Microbiology Biology: Molecular Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Offbeat: Computers and Math Offbeat: General Offbeat: Plants and Animals
Published

A protein mines, sorts rare earths better than humans, paving way for green tech      (via sciencedaily.com)     Original source 

Rare earth elements, like neodymium and dysprosium, are a critical component to almost all modern technologies, from smartphones to hard drives, but they are notoriously hard to separate from the Earth's crust and from one another. Scientists have discovered a new mechanism by which bacteria can select between different rare earth elements, using the ability of a bacterial protein to bind to another unit of itself, or 'dimerize,' when it is bound to certain rare earths, but prefer to remain a single unit, or 'monomer,' when bound to others.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Engineering: Nanotechnology Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

First X-ray of a single atom      (via sciencedaily.com)     Original source 

Scientists have taken the world's first X-ray SIGNAL (or SIGNATURE) of just one atom. This groundbreaking achievement could revolutionize the way scientists detect the materials.

Chemistry: Inorganic Chemistry Energy: Nuclear Environmental: General Physics: General Physics: Optics Space: Astrophysics Space: General Space: Structures and Features
Published

Under pressure: Foundations of stellar physics and nuclear fusion investigated      (via sciencedaily.com)     Original source 

Research using the world's most energetic laser has shed light on the properties of highly compressed matter -- essential to understanding the structure of giant planets and stars, and to develop controlled nuclear fusion, a process that could harvest carbon-free energy.

Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry
Published

Crossing the ring: New method enables C-H activation across saturated carbocycles      (via sciencedaily.com)     Original source 

Chemists add another powerful tool to their 'molecular editing' toolkit for crafting pharmaceuticals and other valuable compounds.

Biology: Cell Biology Ecology: General Ecology: Nature Ecology: Research Environmental: Ecosystems Environmental: General Environmental: Water Geoscience: Earth Science Geoscience: Environmental Issues Geoscience: Geochemistry Geoscience: Geography Geoscience: Oceanography
Published

Mitigating climate change through restoration of coastal ecosystems      (via sciencedaily.com)     Original source 

Researchers are proposing a novel pathway through which coastal ecosystem restoration can permanently capture carbon dioxide from the atmosphere. Seagrass and mangroves -- known as blue carbon ecosystems -- naturally capture carbon through photosynthesis, which converts carbon dioxide into living tissue.

Chemistry: Inorganic Chemistry Energy: Technology Physics: General Physics: Optics
Published

Absolute vs. relative efficiency: How efficient are blue LEDs, actually?      (via sciencedaily.com)     Original source 

The absolute internal quantum efficiency (IQE) of indium gallium nitride (InGaN) based blue light-emitting diodes (LEDs) at low temperatures is often assumed to be 100%. However, a new study has found that the assumption of always perfect IQE is wrong: the IQE of an LED can be as low as 27.5%.

Chemistry: Inorganic Chemistry Physics: General Physics: Optics Physics: Quantum Physics
Published

'A blessing in disguise!' Physics turning bad into good      (via sciencedaily.com)     Original source 

Light is a very delicate and vulnerable property. Light can be absorbed or reflected at the surface of a material depending on the matter's properties or change its form and be converted into thermal energy. Upon reaching a metallic material's surface, light also tends to lose energy to the electrons inside the metal, a broad range of phenomena we call 'optical loss.' Production of ultra-small optical elements that utilize light in various ways is very difficult since the smaller the size of an optical component results in a greater optical loss. However, in recent years, the non-Hermitian theory, which uses optical loss in an entirely different way, has been applied to optics research.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Computer Science: General Engineering: Nanotechnology Offbeat: Computers and Math Offbeat: General
Published

Making the structure of 'fire ice' with nanoparticles      (via sciencedaily.com)     Original source 

Cage structures made with nanoparticles could be a route toward making organized nanostructures with mixed materials, and researchers have shown how to achieve this through computer simulations.

Chemistry: General Chemistry: Inorganic Chemistry Energy: Technology Environmental: General Geoscience: Geochemistry Physics: General Physics: Optics
Published

Twisting under the stroboscope -- Controlling crystal lattices of hybrid solar cell materials with terahertz light      (via sciencedaily.com)     Original source 

To overcome global energy challenges and fight the looming environmental crisis, researchers around the world investigate new materials for converting sunlight into electricity. Some of the most promising candidates for high-efficiency low-cost solar cell applications are based on lead halide perovskite (LHP) semiconductors. Despite record-breaking solar cell prototypes, the microscopic origin of the surprisingly excellent optoelectronic performance of this material class is still not completely understood. Now, an international team of physicists and chemists has demonstrated laser-driven control of fundamental motions of the LHP atomic lattice.

Chemistry: General Chemistry: Inorganic Chemistry Energy: Technology Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Snapshots of photoinjection      (via sciencedaily.com)     Original source 

Ultrafast laser physicists from the attoworld team have gained new insights into the dynamics of electrons in solids immediately after photoinjection.

Biology: Biochemistry Biology: Cell Biology Biology: Evolutionary Biology: General Biology: Marine Ecology: Animals Ecology: General Ecology: Nature Ecology: Research Ecology: Sea Life Environmental: Biodiversity Environmental: Ecosystems Geoscience: Geography
Published

Global macrogenetic map of marine habitat-forming species      (via sciencedaily.com)     Original source 

Species known as marine habitat-forming species -- gorgonians, corals, algae, seaweeds, marine phanerogams, etc.-- are organisms that help generate and structure the underwater landscapes. These are natural refuges for other species, and provide biomass and complexity to the seabeds. But these key species in marine ecosystems are currently threatened by climate change and other perturbations derived from human activity. Now, a study warns that even in the marine protected areas (MPAs) the genetic diversity of structural species is not protected, although it is essential for the response and adaptation of populations to changes that alter the natural environment.

Chemistry: Biochemistry Chemistry: Inorganic Chemistry Computer Science: Quantum Computers Offbeat: Computers and Math Offbeat: General Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Quantum matter breakthrough: Tuning density waves      (via sciencedaily.com)     Original source 

Scientists have found a new way to create a crystalline structure called a 'density wave' in an atomic gas. The findings can help us better understand the behavior of quantum matter, one of the most complex problems in physics.

Biology: Botany Ecology: Endangered Species Ecology: General Ecology: Invasive Species Ecology: Nature Ecology: Research Environmental: Ecosystems
Published

Prescribed burns encourage foul-smelling invaders      (via sciencedaily.com)     Original source 

Though prescribed burns reduce wildfire threats and even improve habitat for some animals, new research shows these fires also spread stinknet, an aptly named weed currently invading superblooms across the Southwestern U.S.

Chemistry: General Chemistry: Inorganic Chemistry Engineering: Nanotechnology Engineering: Robotics Research Offbeat: General Physics: Optics
Published

Physical chemists develop photochromic active colloids shedding light on the development of new smart active materials      (via sciencedaily.com)     Original source 

In nature, the skin of cephalopods (animals with tentacles attached to the head) exhibits unparalleled camouflage ability. Their skin contains pigment groups that can sense changes in environmental light conditions and adjust their appearance through the action of pigment cells. Although intricate in nature, this colour-changing ability is fundamentally based on a mechanical mechanism in which pigment particles are folded or unfolded under the control of radial muscles. Inspired by this natural process, a research team forms dynamic photochromic nanoclusters by mixing cyan, magenta and yellow microbeads, achieving photochromism on a macro scale.