Showing 20 articles starting at article 961
< Previous 20 articles Next 20 articles >
Categories: Chemistry: Inorganic Chemistry, Ecology: General
Published Mixing theory, observation to envision warmer world



A more realistic look at what a hot summer can bring to a nearby pond, and new respect for the blinding speed global warming is bringing.
Published Mysterious underwater acoustic world of British ponds revealed in new study



The previously hidden and diverse underwater acoustic world in British ponds has been uncovered by a team of researchers.
Published CO2 recycling: What is the role of the electrolyte?



The greenhouse gas carbon dioxide can be converted into useful hydrocarbons by electrolysis. The design of the electrolysis cell is crucial in this process. The so-called zero-gap cell is particularly suitable for industrial processes. But there are still problems: The cathodes clog up quickly.
Published Researchers team up with national lab for innovative look at copper reactions



Researchers are working to get a better look at how peroxides on the surface of copper oxide promote the oxidation of hydrogen but inhibit the oxidation of carbon monoxide, allowing them to steer oxidation reactions.
Published New programmable smart fabric responds to temperature and electricity



A new smart material is activated by both heat and electricity, making it the first ever to respond to two different stimuli.
Published Newly sequenced hornet genomes could help explain invasion success



The genomes of two hornet species, the European hornet and the Asian hornet (or yellow-legged hornet) have been sequenced.
Published Quantum computer applied to chemistry



There are high expectations that quantum computers may deliver revolutionary new possibilities for simulating chemical processes. This could have a major impact on everything from the development of new pharmaceuticals to new materials. Researchers have now used a quantum computer to undertake calculations within a real-life case in chemistry.
Published Stab-resistant fabric gains strength from carbon nanotubes, polyacrylate



Fabrics that resist knife cuts can help prevent injuries and save lives. But a sharp enough knife or a very forceful jab can get through some of these materials. Now, researchers report that carbon nanotubes and polyacrylate strengthen conventional aramid to produce lightweight, soft fabrics that provide better protection. Applications include anti-stabbing clothing, helmets and insoles, as well as cut-resistant packaging.
Published Nature's chefs: Scientists propose food-making as means of understanding species interactions



An interdisciplinary group of researchers is proposing a new way to think of some interactions between species, classifying a variety of plants, animals and fungi as 'nature's chefs.' Specifically, nature's chefs are organisms that provide food -- or the illusion of food -- to other organisms. The concept offers a new perspective on species interactions, which can inform how people think about food across the tree of life as well as disparate research disciplines.
Published Physicists find unusual waves in nickel-based magnet



Perturbing electron spins in a magnet usually results in excitations called 'spin waves' that ripple through the magnet like waves moving across the surface of a pond that's been struck by a pebble. Physicists have now discovered dramatically different excitations called 'spin excitons' that can also 'ripple' through a nickel-based magnet as a coherent wave.
Published Even as temperatures rise, this hydrogel material keeps absorbing moisture



Engineers find the hydrogel polyethylene glycol (PEG) doubles its water absorption as temperatures climb from 25 to 50 C, and could be useful for passive cooling or water harvesting in warm climates.
Published Chemists propose ultrathin material for doubling solar cell efficiency



Researchers are studying radical new ways to improve solar power and provide more options for the industry to explore. Chemists are proposing to make solar cells using not silicon, but an abundantly available natural material called molybdenum disulfide. Using a creative combination of photoelectrochemical and spectroscopic techniques, the researchers conducted a series of experiments showing that extremely thin films of molybdenum disulfide display unprecedented charge carrier properties that could someday drastically improve solar technologies.
Published The diversity of present tree species is shaped by climate change in the last 21,000 years



A new global survey of 1000 forest areas shows how climate change since the peak of the last ice age has had a major impact on the diversity and distribution of tree species we see today. The results can help us predict how ecosystems will react to future changes, thus having an impact on conservation management around the globe.
Published Physicists discover transformable nano-scale electronic devices



The nano-scale electronic parts in devices like smartphones are solid, static objects that once designed and built cannot transform into anything else. But physicists have reported the discovery of nano-scale devices that can transform into many different shapes and sizes even though they exist in solid states.
Published Coastal species persist on high seas on floating plastic debris



The high seas have been colonized by a surprising number of coastal marine invertebrate species, which can now survive and reproduce in the open ocean, contributing strongly to the floating community composition. Researchers found coastal species, representing diverse taxonomic groups and life history traits, in the eastern North Pacific Subtropical Gyre on over 70 percent of the plastic debris they examined. Further, the debris carried more coastal species than open ocean species.
Published Researchers successfully establish a strong mechanical bond of immiscible iron and magnesium



Transport relies heavily on steel. But steel is heavy, and scientists are turning to alternatives to lessen the transportation industry's carbon emissions. Magnesium alloys are one such alternative. But developing bonding technology that bonds magnesium alloys with structural steels has been severely limited because magnesium and iron are immiscible. Now, a research group has established a dealloying bonding technology that obtains a strong mechanical bond between iron and magnesium.
Published Tastes differ -- even among North Atlantic killer whales



Killer whales (also known as orcas) are intelligent predators. While it's known that killer whales in the Pacific Northwest exploit widely different food types, even within the same region, we know much less about the feeding habits of those found throughout the North Atlantic. Thanks to a new technique, it is now possible to quantify the proportion of different prey that killer whales in the North Atlantic are eating by studying the fatty acid patterns in their blubber. As climate change leads to a northward redistribution of killer whales, the results have implications not only for the health and survival of these killer whales, but also in terms of potential impacts on sensitive species within Arctic ecosystems.
Published Processing data at the speed of light



Scientists have developed an extremely small and fast nano-excitonic transistor.
Published Gentle method allows for eco-friendly recycling of solar cells



By using a new method, precious metals can be efficiently recovered from thin-film solar cells. The method is also more environmentally friendly than previous methods of recycling and paves the way for more flexible and highly efficient solar cells.
Published Chemists redesign biological PHAs, 'dream' biodegradable plastics



They've been called 'dream' plastics: polyhydroxyalkanoates, or PHAs. Already the basis of a fledgling industry, they're a class of polymers naturally created by living microorganisms, or synthetically produced from biorenewable feedstocks. They're biodegradable in the ambient environment, including oceans and soil.