Showing 20 articles starting at article 441
< Previous 20 articles Next 20 articles >
Categories: Ecology: General, Physics: Quantum Physics
Published To restore ecosystems, think about thwarting hungry herbivores



Re-establishing plantings of trees, grasses and other vegetation is essential for restoring degraded ecosystems, but a new survey of almost 2,600 restoration projects from nearly every type of ecosystem on Earth finds that most projects fail to recognize and control one of the new plants' chief threats: hungry critters that eat plants.
Published What a '2D' quantum superfluid feels like to the touch



Researchers have discovered how superfluid helium 3He would feel if you could put your hand into it. The interface between the exotic world of quantum physics and classical physics of the human experience is one of the major open problems in modern physics. Nobody has been able to answer this question during the 100-year history of quantum physics.
Published Optical-fiber based single-photon light source at room temperature for next-generation quantum processing



Single-photon emitters quantum mechanically connect quantum bits (or qubits) between nodes in quantum networks. They are typically made by embedding rare-earth elements in optical fibers at extremely low temperatures. Now, researchers have developed an ytterbium-doped optical fiber at room temperature. By avoiding the need for expensive cooling solutions, the proposed method offers a cost-effective platform for photonic quantum applications.
Published Investigators examine shifts in coral microbiome under hypoxia



A new study provides the first characterization of the coral microbiome under hypoxia, insufficient oxygen in the water.
Published Late not great -- imperfect timekeeping places significant limit on quantum computers



Quantum physicists show that imperfect timekeeping places a fundamental limit to quantum computers and their applications. The team claims that even tiny timing errors add up to place a significant impact on any large-scale algorithm, posing another problem that must eventually be solved if quantum computers are to fulfill the lofty aspirations that society has for them.
Published Amazon deforestation linked to long distance climate warming



Deforestation in the Amazon causes land surfaces up to 100 kilometers away to get warmer, suggests a new study. The research suggests that tropical forests play a critical role in cooling the land surface -- and that effect can play out over considerable distances.
Published Controlling waves in magnets with superconductors for the first time



Quantum physicists have shown that it's possible to control and manipulate spin waves on a chip using superconductors for the first time. These tiny waves in magnets may offer an alternative to electronics in the future, interesting for energy-efficient information technology or connecting pieces in a quantum computer, for example. The breakthrough primarily gives physicists new insight into the interaction between magnets and superconductors.
Published A superatomic semiconductor sets a speed record



The search is on for better semiconductors. A team of chemists describes the fastest and most efficient semiconductor yet: a superatomic material called Re6Se8Cl2.
Published Conduction electrons drive giant, nonlinear elastic response in Sr2RuO4



The hardness of a material normally is set by the strength of chemical bonds between electrons of neighboring atoms, not by freely flowing conduction electrons. Now a team of scientists has shown that current-carrying electrons can make the lattice much softer than usual in the material Sr2RuO4.
Published Major milestone achieved in new quantum computing architecture



Researchers report a significant advance in quantum computing. They have prolonged the coherence time of their single-electron qubit to an impressive 0.1 milliseconds, nearly a thousand-fold improvement.
Published 'Robin Hood' approach for tracking biodiversity



Researchers have developed a framework that can help scientists understand trends in biodiversity by using data from well-characterized species to provide insights on data-deficient species. The framework provides a how-to guide for researchers and practitioners to implement.
Published Physicists simulate interacting quasiparticles in ultracold quantum gas



In physics, quasiparticles are used to describe complex processes in solids. In ultracold quantum gases, these quasiparticles can be reproduced and studied. Now scientists have been able to observe in experiments how Fermi polarons -- a special type of quasiparticle -- can interact with each other.
Published Using sound to test devices, control qubits



Researchers have developed a system that uses atomic vacancies in silicon carbide to measure the stability and quality of acoustic resonators. What's more, these vacancies could also be used for acoustically-controlled quantum information processing, providing a new way to manipulate quantum states embedded in this commonly-used material.
Published UK air pollution regulations will reduce deaths, but do little to protect ecosystems



Existing air pollution regulations will reduce thousands of premature adult deaths in the UK, but even the most effective technically feasible actions, which will save thousands more lives, will do little to protect the country's sensitive ecosystems, find researchers.
Published Raining cats and dogs: Global precipitation patterns a driver for animal diversity



A team has identified several factors to help answer a fundamental ecological question: why is there a ridiculous abundance of species some places on earth and a scarcity in others? What factors, exactly, drive animal diversity? They discovered that what an animal eats (and how that interacts with climate) shapes Earth's diversity.
Published How quantum light 'sees' quantum sound



Researchers have proposed a new way of using quantum light to 'see' quantum sound. A new paper reveals the quantum-mechanical interplay between vibrations and particles of light, known as photons, in molecules. It is hoped that the discovery may help scientists better understand the interactions between light and matter on molecular scales. And it potentially paves the way for addressing fundamental questions about the importance of quantum effects in applications ranging from new quantum technologies to biological systems.
Published Unexpected behavior discovered in active particles



Physicists have now shown that, depending on the extent to which the propulsion speed of active particles is dependent on their orientation, clusters in different shapes arise in many-particle systems. This might be a possible key to the realization of programmable matter.
Published Accelerating waves shed light on major problems in physics



Researchers at Tampere University and the University of Eastern Finland have reached a milestone in a study where they derived a new kind of wave equation, which applies for accelerating waves. The novel formalism has turned out to be an unexpectedly fertile ground for examining wave mechanics, with direct connections between accelerating waves, general theory of relativity, as well as the arrow of time.
Published Researchers demonstrate a high-speed electrical readout method for graphene nanodevices



Graphene is often referred to as a wonder material for its advantageous qualities. But its application in quantum computers, while promising, is stymied by the challenge of getting accurate measurements of quantum bit states with existing techniques. Now, researchers have developed design guidelines that enable radio-frequency reflectometry to achieve high-speed electrical readouts of graphene nanodevices.
Published Unearthing the ecological impacts of cicada emergences on North American forests



New research unveils the cascading effects of periodical cicada emergence events on forest ecosystems ahead of an historic convergence of broods set to emerge spring of 2024.