Showing 20 articles starting at article 561

< Previous 20 articles        Next 20 articles >

Categories: Ecology: General, Physics: Quantum Physics

Return to the site home page

Computer Science: Artificial Intelligence (AI) Computer Science: General Engineering: Robotics Research Mathematics: Modeling Offbeat: Computers and Math Physics: Optics Physics: Quantum Physics
Published

Self-supervised AI learns physics to reconstruct microscopic images from holograms      (via sciencedaily.com) 

Researchers have unveiled an artificial intelligence-based model for computational imaging and microscopy without training with experimental objects or real data. The team introduced a self-supervised AI model nicknamed GedankenNet that learns from physics laws and thought experiments. Informed only by the laws of physics that universally govern the propagation of electromagnetic waves in space, the researchers taught their AI model to reconstruct microscopic images using only random artificial holograms -- synthesized solely from 'imagination' without relying on any real-world experiments, actual sample resemblances or real data.

Ecology: General Ecology: Invasive Species Ecology: Research Environmental: Biodiversity
Published

Study reveals successful strategies for removing invasive caimans from Florida Everglades      (via sciencedaily.com) 

A new study reveals how a succession of strategies can take control of an invasive species population.

Ecology: General Ecology: Research Ecology: Trees Environmental: Ecosystems
Published

In the treetops: Ecologist studies canopy soil abundance, chemistry      (via sciencedaily.com)     Original source 

Ecologists examined the distribution patterns of canopy soils, and their soil properties, across Costa Rican forests. The researchers suggest canopy soil may store more carbon than previously thought. Consideration of the time needed for reforestation of system with tree canopies should include the time needed for canopy mat regrowth.

Computer Science: Quantum Computers Physics: Quantum Computing Physics: Quantum Physics
Published

Current takes a surprising path in quantum material      (via sciencedaily.com) 

Researchers used magnetic imaging to obtain the first direct visualization of how electrons flow in a special type of insulator, and by doing so they discovered that the transport current moves through the interior of the material, rather than at the edges, as scientists had long assumed.

Computer Science: Quantum Computers Physics: Quantum Computing Physics: Quantum Physics
Published

Sensing and controlling microscopic spin density in materials      (via sciencedaily.com) 

Researchers found a way to tune the spin density in diamond by applying an external laser or microwave beam. The finding could open new possibilities for advanced quantum devices.

Ecology: General Ecology: Invasive Species Ecology: Research Environmental: Biodiversity Environmental: Ecosystems Environmental: Wildfires
Published

Scientists dig into wildfire predictions, long-term impacts      (via sciencedaily.com)     Original source 

Wildfires are an ancient force shaping the environment, but they have grown in frequency, range and intensity in response to a changing climate. Scientists are working on several fronts to better understand and predict these events and what they mean for the carbon cycle and biodiversity.

Computer Science: Quantum Computers Physics: Quantum Computing Physics: Quantum Physics
Published

Quantum discovery: Materials can host D-wave effects with F-wave behaviors      (via sciencedaily.com) 

In a potential boon for quantum computing, physicists have shown that topologically protected quantum states can be entangled with other, highly manipulable quantum states in some electronic materials.

Physics: Quantum Physics
Published

Super Radar: Breakthrough radar research overcomes a nearly century-old trade-off between wavelength and distance resolution      (via sciencedaily.com) 

New interference radar functions improve the distance resolution between objects using radar waves. The results may have important ramifications in military, construction, archaeology, mineralogy and many other domains of radar applications. It addresses a nine decades-old problem that requires scientists and engineers to sacrifice detail and resolution for observation distance -- underwater, underground, and in the air.

Physics: Quantum Physics
Published

Calculations reveal high-resolution view of quarks inside protons      (via sciencedaily.com) 

A collaboration of nuclear theorists has used supercomputers to predict the spatial distributions of charges, momentum, and other properties of 'up' and 'down' quarks within protons. The calculations show that the up quark is more symmetrically distributed and spread over a smaller distance than the down quark.

Biology: Marine Ecology: General Ecology: Research Ecology: Sea Life Geoscience: Oceanography
Published

Study analyzes nearshore California marine heatwaves and cold spells amid changing climate conditions      (via sciencedaily.com)     Original source 

Human-caused climate change has also caused extreme ocean temperatures and conditions with detrimental impacts on marine ecosystems and ocean-related ecology.  A new study explores ocean temperature data along California's Coast, finding that certain environmental conditions and the state of the ocean led to an enhanced risk for marine heatwaves and cold spells, conditions that scientists and environmental managers will need to monitor to preserve and protect vital ecosystems critical to the California ocean economy, known as the Blue Economy.

Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Absence of universal topological signatures in high harmonic generation      (via sciencedaily.com) 

Theoreticians report that they found no evidence of any universal topological signatures after performing the first ab initio investigation of high harmonic generation from topological insulators.

Energy: Nuclear Physics: Quantum Computing Physics: Quantum Physics
Published

Nuclear spin's impact on biological processes uncovered      (via sciencedaily.com) 

Researchers have discovered that nuclear spin influences biological processes, challenging long-held beliefs. They found that certain isotopes behave differently in chiral environments, affecting oxygen dynamics and transport. This breakthrough could advance biotechnology, quantum biology, and NMR technology, with potential applications in isotope separation and medical imaging.

Biology: Evolutionary Biology: Marine Ecology: General Ecology: Research Ecology: Sea Life
Published

Researchers find evolutionary adaption in trout of Wyoming's Wind River Mountains      (via sciencedaily.com)     Original source 

Scientists found that trout from lakes stocked decades ago in the Wind River Mountains have higher numbers of gill rakers, which are bony or cartilage structures in the gullets of fish that act as sieves to retain zooplankton and nourish the trout. The difference is likely a result of the trout adapting to the food sources of the once-fishless high-mountain lakes -- a change that has taken place in a relatively short period of time and at a rate that is generally consistent with the historic timing of stocking for each of the lakes.

Computer Science: Quantum Computers Energy: Technology Offbeat: Computers and Math Physics: Quantum Computing Physics: Quantum Physics
Published

Scientists create novel approach to control energy waves in 4D      (via sciencedaily.com) 

Everyday life involves the three dimensions or 3D -- along an X, Y and Z axis, or up and down, left and right, and forward and back. But, in recent years scientists have explored a 'fourth dimension' (4D), or synthetic dimension, as an extension of our current physical reality.

Computer Science: Quantum Computers Physics: Quantum Computing Physics: Quantum Physics
Published

When electrons slowly vanish during cooling      (via sciencedaily.com) 

Many substances change their properties when they are cooled below a certain critical temperature. Such a phase transition occurs, for example, when water freezes. However, in certain metals there are phase transitions that do not exist in the macrocosm. They arise because of the special laws of quantum mechanics that apply in the realm of nature's smallest building blocks. It is thought that the concept of electrons as carriers of quantized electric charge no longer applies near these exotic phase transitions. Researchers have now found a way to prove this directly. Their findings allow new insights into the exotic world of quantum physics.

Physics: Optics Physics: Quantum Physics
Published

New method improves proton acceleration with high power laser      (via sciencedaily.com) 

Bringing protons up to speed with strong laser pulses -- this still young concept promises many advantages over conventional accelerators. For instance, it seems possible to build much more compact facilities. Prototypes to date, however, in which laser pulses are fired at ultra-thin metal foils, show weaknesses -- especially in the frequency with which they can accelerate protons. An international working group has tested a new technique: In this approach, frozen hydrogen acts as a 'target' for the laser pulses.

Physics: Quantum Computing Physics: Quantum Physics
Published

How atomic nuclei vibrate      (via sciencedaily.com) 

Using ultra-high-precision laser spectroscopy on a simple molecule, a group of physicists has measured the wave-like vibration of atomic nuclei with an unprecedented level of precision. The physicists report that they can thus confirm the wave-like movement of nuclear material more precisely that ever before and that they have found no evidence of any deviation from the established force between atomic nuclei.

Engineering: Graphene Physics: Quantum Computing Physics: Quantum Physics
Published

Scientists caught Hofstadter's butterfly in one of the most ancient materials on Earth      (via sciencedaily.com) 

Researchers have revisited one of the most ancient materials on Earth -- graphite, and discovered new physics that has eluded the field for decades.

Ecology: General Ecology: Invasive Species Ecology: Research Ecology: Trees Environmental: Ecosystems Geoscience: Environmental Issues
Published

New study reveals that tree species diversity increases spider density      (via sciencedaily.com)     Original source 

The link between tree diversity and spider populations can help homeowners and other land managers better plan tree plantings to naturally mitigate the effects of climate change.

Ecology: Endangered Species Ecology: Extinction Ecology: General Ecology: Research Environmental: Ecosystems
Published

Global wildlife trade risks altering evolutionary history and ecosystem function, study suggests      (via sciencedaily.com)     Original source 

Some of the world's most distinct and ancient animal species, which play crucial roles in our planet's ecosystems, are exploited for the wildlife trade across large parts of the world, according to new research.