Showing 20 articles starting at article 641

< Previous 20 articles        Next 20 articles >

Categories: Ecology: General, Physics: Quantum Physics

Return to the site home page

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Engineering: Nanotechnology Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

First X-ray of a single atom      (via sciencedaily.com)     Original source 

Scientists have taken the world's first X-ray SIGNAL (or SIGNATURE) of just one atom. This groundbreaking achievement could revolutionize the way scientists detect the materials.

Chemistry: Biochemistry Chemistry: General Engineering: Nanotechnology Physics: General Physics: Optics Physics: Quantum Physics
Published

A nanocrystal shines on and off indefinitely      (via sciencedaily.com)     Original source 

Optical probes have led to numerous breakthroughs in applications like optical memory, nanopatterning, and bioimaging, but existing options have limited lifespans and will eventually 'photobleach.' New work demonstrates a promising, longer-lasting alternative: ultra-photostable avalanching nanoparticles that can turn on and off indefinitely in response to near-infrared light from simple lasers.

Biology: Cell Biology Ecology: General Ecology: Nature Ecology: Research Environmental: Ecosystems Environmental: General Environmental: Water Geoscience: Earth Science Geoscience: Environmental Issues Geoscience: Geochemistry Geoscience: Geography Geoscience: Oceanography
Published

Mitigating climate change through restoration of coastal ecosystems      (via sciencedaily.com)     Original source 

Researchers are proposing a novel pathway through which coastal ecosystem restoration can permanently capture carbon dioxide from the atmosphere. Seagrass and mangroves -- known as blue carbon ecosystems -- naturally capture carbon through photosynthesis, which converts carbon dioxide into living tissue.

Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Symmetry breaking by ultrashort light pulses opens new quantum pathways for coherent phonons      (via sciencedaily.com)     Original source 

Researchers have demonstrated a novel concept for exciting and probing coherent phonons in crystals of a transiently broken symmetry. The key of this concept lies in reducing the symmetry of a crystal by appropriate optical excitation, as has been shown with the prototypical crystalline semimetal bismuth (Bi).

Chemistry: Inorganic Chemistry Physics: General Physics: Optics Physics: Quantum Physics
Published

'A blessing in disguise!' Physics turning bad into good      (via sciencedaily.com)     Original source 

Light is a very delicate and vulnerable property. Light can be absorbed or reflected at the surface of a material depending on the matter's properties or change its form and be converted into thermal energy. Upon reaching a metallic material's surface, light also tends to lose energy to the electrons inside the metal, a broad range of phenomena we call 'optical loss.' Production of ultra-small optical elements that utilize light in various ways is very difficult since the smaller the size of an optical component results in a greater optical loss. However, in recent years, the non-Hermitian theory, which uses optical loss in an entirely different way, has been applied to optics research.

Energy: Technology Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Forging a dream material with semiconductor quantum dots      (via sciencedaily.com)     Original source 

Researchers have succeeded in creating a 'superlattice' of semiconductor quantum dots that can behave like a metal, potentially imparting exciting new properties to this popular class of materials.

Chemistry: General Chemistry: Inorganic Chemistry Energy: Technology Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Snapshots of photoinjection      (via sciencedaily.com)     Original source 

Ultrafast laser physicists from the attoworld team have gained new insights into the dynamics of electrons in solids immediately after photoinjection.

Chemistry: Thermodynamics Computer Science: General Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Quantum scientists accurately measure power levels one trillion times lower than usual      (via sciencedaily.com)     Original source 

Scientists have developed a nanodevice that can measure the absolute power of microwave radiation down to the femtowatt level at ultra-low temperatures -- a scale trillion times lower than routinely used in verifiable power measurements. The device has the potential to significantly advance microwave measurements in quantum technology.

Biology: Biochemistry Biology: Cell Biology Biology: Evolutionary Biology: General Biology: Marine Ecology: Animals Ecology: General Ecology: Nature Ecology: Research Ecology: Sea Life Environmental: Biodiversity Environmental: Ecosystems Geoscience: Geography
Published

Global macrogenetic map of marine habitat-forming species      (via sciencedaily.com)     Original source 

Species known as marine habitat-forming species -- gorgonians, corals, algae, seaweeds, marine phanerogams, etc.-- are organisms that help generate and structure the underwater landscapes. These are natural refuges for other species, and provide biomass and complexity to the seabeds. But these key species in marine ecosystems are currently threatened by climate change and other perturbations derived from human activity. Now, a study warns that even in the marine protected areas (MPAs) the genetic diversity of structural species is not protected, although it is essential for the response and adaptation of populations to changes that alter the natural environment.

Chemistry: Biochemistry Chemistry: Inorganic Chemistry Computer Science: Quantum Computers Offbeat: Computers and Math Offbeat: General Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Quantum matter breakthrough: Tuning density waves      (via sciencedaily.com)     Original source 

Scientists have found a new way to create a crystalline structure called a 'density wave' in an atomic gas. The findings can help us better understand the behavior of quantum matter, one of the most complex problems in physics.

Biology: Botany Ecology: Endangered Species Ecology: General Ecology: Invasive Species Ecology: Nature Ecology: Research Environmental: Ecosystems
Published

Prescribed burns encourage foul-smelling invaders      (via sciencedaily.com)     Original source 

Though prescribed burns reduce wildfire threats and even improve habitat for some animals, new research shows these fires also spread stinknet, an aptly named weed currently invading superblooms across the Southwestern U.S.

Ecology: General Ecology: Research Environmental: Ecosystems Environmental: Wildfires
Published

Wildfire spread risk increases where trees, shrubs replace grasses      (via sciencedaily.com)     Original source 

A new study found that as woody plants like shrubs and trees replace herbaceous plants like grasses, spot fires can occur farther away from the original fire perimeter.

Chemistry: Biochemistry Offbeat: General Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Uncovering universal physics in the dynamics of a quantum system      (via sciencedaily.com)     Original source 

New experiments using one-dimensional gases of ultra-cold atoms reveal a universality in how quantum systems composed of many particles change over time following a large influx of energy that throws the system out of equilibrium.

Ecology: General Environmental: Biodiversity Environmental: General Geoscience: Earth Science Geoscience: Environmental Issues Geoscience: Geography
Published

Climate change to push species over abrupt tipping points      (via sciencedaily.com)     Original source 

Climate change is likely to abruptly push species over tipping points as their geographic ranges reach unforeseen temperatures, finds a new study.

Biology: Botany Biology: General Ecology: General Ecology: Nature Ecology: Research Environmental: Ecosystems
Published

Study finds carrying pollen heats up bumble bees, raises new climate change questions      (via sciencedaily.com)     Original source 

A new study finds carrying pollen is a workout that significantly increases the body temperature of bumble bees. This new understanding of active bumble bee body temperatures raises questions about how these species will be impacted by a warmer world due to climate change.

Chemistry: Biochemistry Chemistry: Inorganic Chemistry Computer Science: General Computer Science: Quantum Computers Mathematics: Modeling Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Curved spacetime in a quantum simulator      (via sciencedaily.com)     Original source 

The connection between quantum physics and the theory of relativity is extremely hard to study. But now, scientists have set up a model system, which can help: Quantum particles can be tuned in such a way that the results can be translated into information about other systems, which are much harder to observe. This kind of 'quantum simulator' works very well and can lead to new insights about the nature of relativity and quantum physics.

Biology: Botany Biology: Zoology Ecology: General Ecology: Invasive Species Ecology: Nature Ecology: Research Environmental: Biodiversity Environmental: Ecosystems Environmental: General
Published

We now know exactly what happens in nature when we fell forests      (via sciencedaily.com)     Original source 

Deforestation is the biggest threat to the planet's ecosystems, and new research has now mapped out exactly what happens when agriculture replaces forestry.

Chemistry: Biochemistry Engineering: Graphene Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

With new experimental method, researchers probe spin structure in 2D materials for first time      (via sciencedaily.com)     Original source 

In the study, a team of researchers describe what they believe to be the first measurement showing direct interaction between electrons spinning in a 2D material and photons coming from microwave radiation.

Computer Science: General Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Researcher uses artificial intelligence to discover new materials for advanced computing      (via sciencedaily.com)     Original source 

Researchers have identified novel van der Waals (vdW) magnets using cutting-edge tools in artificial intelligence (AI). In particular, the team identified transition metal halide vdW materials with large magnetic moments that are predicted to be chemically stable using semi-supervised learning. These two-dimensional (2D) vdW magnets have potential applications in data storage, spintronics, and even quantum computing.