Showing 20 articles starting at article 301
< Previous 20 articles Next 20 articles >
Categories: Ecology: General, Physics: General
Published Older trees help to protect an endangered species



The oldest trees in the forest help to prevent the disappearance of endangered species in the natural environment, according to a new study. This is the case of the wolf lichen -- threatened throughout Europe --, which now finds refuge in the oldest trees in the high mountains of the Pyrenees. This study reveals for the first time the decisive role of the oldest trees in the conservation of other living beings thanks to their characteristic and unique physiology.
Published 100 kilometers of quantum-encrypted transfer



Researchers have taken a big step towards securing information against hacking. They have succeeded in using quantum encryption to securely transfer information 100 kilometers via fiber optic cable -- roughly equivalent to the distance between Oxford and London.
Published Researchers discover dual topological phases in an intrinsic monolayer crystal



An international team working with single-atom thick crystals found TaIrTe4's transition between the two distinct topological states of insulation and conduction. The material exhibited zero electrical conductivity within its interior, while its boundaries remain conductive. The team's investigation determined that the two topological states stem from disparate origins. The novel properties can serve as a promising platform for exploring exotic quantum phases and electromagnetism.
Published Melting glaciers in a warmer climate provide new ground for invasive species



In 2022 and 2023, biologists from research institutes in the UK and the Falkland Islands led two expeditions to South Georgia to study the impacts of invasive species on this cold and rugged sub-Antarctic island. They report that several invasive plants and invertebrates rapidly colonized the new ground exposed by melting glaciers, leaving few pristine areas for native species. With ongoing climate change, more research is needed across the world to understand how invasive species impact the fragile ecosystems that develop after glacier melting.
Published Magnetic avalanche triggered by quantum effects



Scientists have shown that Barkhausen noise can be produced not only through traditional, or classical means, but through quantum mechanical effects. The research represents an advance in fundamental physics and could one day have applications in creating quantum sensors and other electronic devices.
Published New approach to monitoring freshwater quality can identify sources of pollution, and predict their effects



Analysing the diversity of organic compounds dissolved in freshwater provides a reliable measure of ecosystem health, say scientists.
Published Nuclear fusion, lithium and the tokamak: Adding just enough fuel to the fire



Building upon recent findings showing the promise of coating the inner surface of the vessel containing a fusion plasma in liquid lithium, researchers have determined the maximum density of uncharged particles at the edge of a plasma before certain instabilities become unpredictable. The research includes observations, numerical simulations and analysis from their experiments inside a fusion plasma vessel called the Lithium Tokamak Experiment-Beta (LTX- ). This is the first time such a level has been established for LTX- , and knowing it is a big step in their mission to prove lithium is the ideal choice for an inner-wall coating in a tokamak because it guides them toward the best practices for fueling their plasmas.
Published A new type of cooling for quantum simulators



Quantum simulators are quantum systems that can be controlled exceptionally well. They can be used to indirectly learn something about other quantum systems, which cannot be experimented on so easily. Therefore, quantum simulators play an important role in unraveling the big questions of quantum physics. However, they are limited by temperature: They only work well, when they are extremely cold. Scientists have now developed a method to cool quantum simulators even more than before: by splitting a Bose-Einstein-condensate in half, in a very special way.
Published Researchers find energy development and tree encroachment impact Wyoming pronghorn



While Wyoming is home to some of North America's most abundant populations of pronghorn that have largely been stable in recent years, a new analysis shows that many herds are experiencing long-term declines in fawn production.
Published Bullseye! Accurately centering quantum dots within photonic chips



Researchers have now developed standards and calibrations for optical microscopes that allow quantum dots to be aligned with the center of a photonic component to within an error of 10 to 20 nanometers (about one-thousandth the thickness of a sheet of paper). Such alignment is critical for chip-scale devices that employ the radiation emitted by quantum dots to store and transmit quantum information.
Published New method to measure entropy production on the nanoscale



Entropy, the amount of molecular disorder, is produced in several systems but cannot be measured directly. A new equation sheds new light on how entropy is produced on a very short time scale in laser excited materials.
Published Scientists on the hunt for evidence of quantum gravity's existence at the South Pole



An Antarctic large-scale experiment is striving to find out if gravity also exists at the quantum level. An extraordinary particle able to travel undisturbed through space seems to hold the answer.
Published Seeing the forest for the trees: Species diversity is directly correlated with productivity in eastern U.S. forests



When officials make tough calls on which areas to prioritize for conservation, biodiversity is often their top consideration. But there are several types of diversity, and not all of them overlap perfectly. In a new study, researchers analyzed 20-years' worth of U.S. Forest Service data and show that the simplest measure of diversity is the best predictor of healthy forest growth, providing a roadmap for quickly and efficiently protecting ecological resources.
Published Scientists deliver quantum algorithm to develop new materials and chemistry



Scientists published the Cascaded Variational Quantum Eigensolver (CVQE) algorithm in a recent article, expected to become a powerful tool to investigate the physical properties in electronic systems.
Published 'Winners and losers' as global warming forces plants uphill



Some plant species will 'win' and others will 'lose' as global warming forces them to move uphill, new research shows.
Published The world is one step closer to secure quantum communication on a global scale



Researchers have brought together two Nobel prize-winning research concepts to advance the field of quantum communication. Scientists can now efficiently produce nearly perfect entangled photon pairs from quantum dot sources.
Published Quantum interference could lead to smaller, faster, and more energy-efficient transistors



Scientists made a single-molecule transistor using quantum interference to control electron flow. This new design offers high on/off ratio and stability, potentially leading to smaller, faster, and more energy-efficient devices. Quantum interference also improves the transistor's sensitivity to voltage changes, further boosting its efficiency.
Published Unintended consequences of fire suppression



A new study reveals how fire suppression ensures that wildfires will burn under extreme conditions at high severity, exacerbating the impacts of climate change and fuel accumulation.
Published N-channel diamond field-effect transistor



A research team has developed an n-channel diamond MOSFET (metal-oxide-semiconductor field-effect transistor). The developed n-channel diamond MOSFET provides a key step toward CMOS (complementary metal-oxide-semiconductor: one of the most popular technologies in the computer chip) integrated circuits for harsh-environment- applications as well as the development of diamond power electronics.
Published Species diversity promotes ecosystem stability



What maintains stability within an ecosystem and prevents a single best competitor from displacing other species from a community? Does ecosystem stability depend upon the presence of a wide variety of species, as early ecologists believed, or does diversity do the exact opposite, and lead to instability, as modern theory predicts? A new study suggests an answer to this question that has been a subject of debate among ecologists for half a century.