Showing 20 articles starting at article 841
< Previous 20 articles Next 20 articles >
Categories: Chemistry: General, Ecology: General
Published 'Mona Lisa' hides a surprising mix of toxic pigments, study shows



Leonardo da Vinci is renowned to this day for innovations in fields across the arts and sciences. Now, new analyses show that his taste for experimentation extended even to the base layers underneath his paintings. Surprisingly, samples from both the 'Mona Lisa' and the 'Last Supper' suggest that he experimented with lead(II) oxide, causing a rare compound called plumbonacrite to form below his artworks.
Published Titanium oxide material can remove toxic dyes from wastewater



Discharged in large quantities by textile, cosmetic, ink, paper and other manufacturers, dyes carry high-toxicity and can bring potential carcinogens to wastewater. It’s a major concern for wastewater treatment — but researchers may have found a solution, using a tiny nanofilament.
Published Modular dam design could accelerate the adoption of renewable energy



Scientists have developed a new modular steel buttress dam system designed to resolve energy storage issues hindering the integration of renewable resources into the energy mix. The new modular steel buttress dam system facilitates the rapid construction of paired reservoir systems for grid-scale energy storage and generation using closed-loop pumped storage hydropower, cutting dam construction costs by one-third and reducing construction schedules by half.
Published Discovery made about Fischer Tropsch process could help improve fuel production



A fundamental discovery about the Fischer Tropsch process, a catalytic reaction used in industry to convert coal, natural gas or biomass to liquid fuels, could someday allow for more efficient fuel production. Researchers discovered previously unknown self-sustained oscillations in the Fischer Tropsch process. They found that unlike many catalytic reactions which have one steady state, this reaction periodically moves back and forth from a high to a low activity state. The discovery means that these well-controlled oscillatory states might be used in the future to control the reaction rate and the yields of desired products.
Published The medicine of the future could be artificial life forms



Imagine a life form that doesn't resemble any of the organisms found on the tree of life. One that has its own unique control system, and that a doctor would want to send into your body. It sounds like a science fiction movie, but according to nanoscientists, it can—and should—happen in the future.
Published Successful morphing of inorganic perovskites without damaging their functional properties



A research team has successfully morphed all-inorganic perovskites at room temperature without compromising their functional properties. Their findings demonstrate the potential of this class of semiconductors for manufacturing next-generation deformable electronics and energy systems in the future.
Published Two-dimensional compounds can capture carbon from the air



Some of the thinnest materials known to humankind -- MXene and MBene compounds -- may provide solutions to scientists in their quest to curb the effects of global warming. These substances are only a few atoms thick, making them two-dimensional. Because of their large surface area, the materials have the potential to absorb carbon dioxide molecules from the atmosphere, which could help reduce the harmful effects of climate change by safely sequestering carbon dioxide, according to a review study.
Published Staying dry for months underwater



Researchers have developed a superhydrophobic surface with a stable plastron that can last for months under water. The team’s general strategy to create long-lasting underwater superhydrophobic surfaces, which repel blood and drastically reduce or prevent the adhesion of bacterial and marine organisms such as barnacles and mussels, opens a range of applications in biomedicine and industry.
Published New 'Assembly Theory' unifies physics and biology to explain evolution and complexity



An international team of researchers has developed a new theoretical framework that bridges physics and biology to provide a unified approach for understanding how complexity and evolution emerge in nature. This new work on 'Assembly Theory' represents a major advance in our fundamental comprehension of biological evolution and how it is governed by the physical laws of the universe.
Published Invertebrate biodiversity is improving in England's rivers, long-term trends show



Rivers across England have seen a significant improvement in river invertebrate biodiversity since 1989, shows a new study.
Published Volcanic ash effects on Earth systems



To bridge the knowledge gap between volcanologists and atmospheric scientists working on climate change and observing global systems, researchers have characterized volcanic ash samples from many explosive eruptions of a broad compositional range.
Published Study raises concerns over powdered infant formula preparation machines



A new study raises concerns over powdered infant formula preparation machines.
Published Carbon-capture tree plantations threaten tropical biodiversity for little gain, ecologists say



The increasingly urgent climate crisis has led to a boom in commercial tree plantations in an attempt to offset excess carbon emissions. However, authors argue that these carbon-offset plantations might come with costs for biodiversity and other ecosystem functions. Instead, the authors say we should prioritize conserving and restoring intact ecosystems.
Published Carbon capture method plucks CO2 straight from the air



Even as the world slowly begins to decarbonize industrial processes, achieving lower concentrations of atmospheric carbon requires technologies that remove existing carbon dioxide from the atmosphere — rather than just prevent the creation of it.
Published Improved mangrove conservation could yield cash, carbon, coastal benefits



A shift in the way we think about the benefits mangroves provide to coastal regions could yield significant economic and biodiversity gains and protect millions from flooding, research has revealed.
Published Metal-loving microbes could replace chemical processing of rare earths



Scientists have characterized the genome of a metal-loving bacteria with an affinity for rare earth elements. The research paves the way towards replacing the harsh chemical processing of these elements with a benign practice called biosorption.
Published Viruses dynamic and changing after dry soils are watered



Viruses in soil may not be as destructive to bacteria as once thought and could instead act like lawnmowers, culling older cells and giving space for new growth, according to research.
Published Not the usual suspects: New interactive lineup boosts eyewitness accuracy



Allowing eyewitnesses to dynamically explore digital faces using a new interactive procedure can significantly improve identification accuracy compared to the video lineup and photo array procedures used by police worldwide, a new study reveals.
Published Study on mysterious Amazon porcupine can help its protection



A recent study sheds new light on the elusive Roosmalens' dwarf porcupine, a poorly understood neotropical species. After 22 years of relative obscurity, this research uncovers vital information about its distribution, phylogenetics, and potential conservation threats, not only revealing its endemic presence in the Madeira biogeographical province but also expanding its known range in the southern Amazon.
Published Climate and human land use both play roles in Pacific island wildfires past and present



It’s long been understood that human settlement contributes to conditions that make Pacific Islands more susceptible to wildfires, such as the devastating Aug. 8 event that destroyed the Maui community of Lahaina. But a new study from fire scientist shows that climate is an undervalued part of the equation.