Showing 20 articles starting at article 581

< Previous 20 articles        Next 20 articles >

Categories: Chemistry: Inorganic Chemistry, Ecology: Research

Return to the site home page

Biology: Biochemistry Biology: General Ecology: General Ecology: Nature Ecology: Research Ecology: Sea Life Environmental: Ecosystems Environmental: General Environmental: Water Environmental: Wildfires Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Wildfires also impact aquatic ecosystems      (via sciencedaily.com)     Original source 

Researchers have shown that the effects of wildfires are not limited to terrestrial ecosystems. Aquatic ecosystems are also undergoing rapid changes. The study found that fire debris transforms lakes and other aquatic ecosystems, with implications for fisheries and water quality.

Chemistry: Biochemistry Chemistry: Inorganic Chemistry
Published

Towards next-generation nanocatalysts to revolutionize active electron transfer      (via sciencedaily.com)     Original source 

Over the years, scientists have proposed many novel molecular systems for photoinduced electron transfer. Researchers have now developed a copolymer-conjugated nanocatalytic system that can drive efficient photoinduced electron transfer. They employed a temperature-responsive ternary random copolymer and coupled it to platinum nanoparticles. By enabling dynamic electron transfer and driving photoinduced hydrogen generation, this innovation can have far-reaching implications for artificial photosynthesis, electrochemical reactions, macromolecular recognition, and bio-inspired soft materials.

Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Thermodynamics Physics: General
Published

Ultra-hard material to rival diamond discovered      (via sciencedaily.com)     Original source 

Scientists have solved a decades-long puzzle and unveiled a near unbreakable substance that could rival diamond, as the hardest material on earth, a study says. Researchers found that when carbon and nitrogen precursors were subjected to extreme heat and pressure, the resulting materials -- known as carbon nitrides -- were tougher than cubic boron nitride, the second hardest material after diamond.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Engineering: Nanotechnology
Published

Spinning up control: Propeller shape helps direct nanoparticles      (via sciencedaily.com)     Original source 

Self-propelled nanoparticles could potentially advance drug delivery and lab-on-a-chip systems -- but they are prone to go rogue with random, directionless movements. Now, an international team of researchers has developed an approach to rein in the synthetic particles.

Chemistry: Inorganic Chemistry Chemistry: Thermodynamics
Published

Scientists 3D print self-heating microfluidic devices      (via sciencedaily.com)     Original source 

A fabrication process can produce self-heating microfluidic devices in one step using a multimaterial 3D printer. These devices, which can be made rapidly and cheaply in large numbers, could help clinicians in remote parts of the world detect diseases without expensive lab equipment.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Environmental: General Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Eco-friendly technologies for plastic production and biodegradation?      (via sciencedaily.com)     Original source 

A new article covering an overview and trends of plastic production and degradation technology using microorganisms has been published. Eco-friendly and sustainable plastic production and degradation technology using microorganisms as a core technology to achieve a plastic circular economy was presented.

Chemistry: Biochemistry Chemistry: Inorganic Chemistry
Published

New conductive, cotton-based fiber developed for smart textiles      (via sciencedaily.com)     Original source 

A single strand of newly developed fiber has the flexibility of cotton and the electric conductivity of the polymer, polyaniline. The new material has shown good potential for wearable e-textiles. The researchers tested the fibers with a system that powered an LED light and another that sensed ammonia gas. While intrinsically conductive, polyaniline is brittle and by itself, cannot be made into a fiber for textiles. To solve this, the researchers dissolved cotton cellulose from recycled t-shirts into a solution and the conductive polymer into another separate solution.

Ecology: General Ecology: Research Environmental: Ecosystems Environmental: Water Offbeat: Earth and Climate Offbeat: General Offbeat: Plants and Animals
Published

Have researchers found the missing link that explains the mysterious phenomenon known as fairy circles?      (via sciencedaily.com)     Original source 

Fairy circles, a nearly hexagonal pattern of bare-soil circular gaps in grasslands, initially observed in Namibia and later in other parts of the world, have fascinated and baffled scientists for years. New research suggests that all theories to date have overlooked the coupling between two robust mechanisms essential for understanding ecosystem response: phenotypic plasticity at the level of a single plant, and spatial self-organization in vegetation patterns at the level of a plant population.

Chemistry: General Chemistry: Inorganic Chemistry Energy: Alternative Fuels Environmental: General Environmental: Water Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Polyethylene waste could be a thing of the past      (via sciencedaily.com)     Original source 

Experts have developed a way of using polyethylene waste (PE) as a feedstock and converted it into valuable chemicals, via light-driven photocatalysis. PE is the most widely used plastic in the world including for daily food packaging, shopping bags and reagent bottles, and the researchers say that while recycling of PE is still in early development, it could be an untapped resource for re-use.

Chemistry: Biochemistry Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Physics: Optics
Published

First observation of structures resulting from 3D domain swapping in antibody light chains      (via sciencedaily.com)     Original source 

Antibodies hold promise as therapeutic agents. However, their tendency to aggregate poses significant challenges to drug development. In a groundbreaking study, researchers now provide novel insights into the structure formed due to 3D domain swapping of the antibody light chain, the part of the antibody contributing to antigen binding. Their findings are expected to lead to improvements in antibody quality and the development of novel drugs.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry
Published

A fork in the 'rhod': Researchers unveil comprehensive collection of rhodamine-based fluorescent dyes      (via sciencedaily.com)     Original source 

After more than a decade of developing fluorescent probes, a research team has now released the culmination of their years of work: A comprehensive collection of rhodamine-based dyes, the novel chemistry they developed to synthesize them and insights that provide a roadmap for designing future probes.

Chemistry: Inorganic Chemistry Chemistry: Thermodynamics Engineering: Nanotechnology Physics: General Physics: Optics
Published

Polaritons open up a new lane on the semiconductor highway      (via sciencedaily.com)     Original source 

On the highway of heat transfer, thermal energy is moved by way of quantum particles called phonons. But at the nanoscale of today's most cutting-edge semiconductors, those phonons don't remove enough heat. That's why researchers are focused on opening a new nanoscale lane on the heat transfer highway by using hybrid quasiparticles called 'polaritons.'

Chemistry: General Chemistry: Inorganic Chemistry
Published

Catalyst for electronically controlled C--H functionalization      (via sciencedaily.com)     Original source 

Scientists chipping away at one of the great challenges of metal-catalyzed C--H functionalization with a new method that uses a cobalt catalyst to differentiate between bonds in fluoroarenes, functionalizing them based on their intrinsic electronic properties. And their method is fast -- comparable in speed to those that rely on iridium.

Biology: Biochemistry Biology: General Biology: Marine Biology: Zoology Ecology: Extinction Ecology: General Ecology: Invasive Species Ecology: Nature Ecology: Research Ecology: Sea Life Environmental: Ecosystems Environmental: General
Published

Feathered friends can become unlikely helpers for tropical coral reefs facing climate change threat      (via sciencedaily.com)     Original source 

Tropical coral reefs are among our most spectacular ecosystems, yet a rapidly warming planet threatens the future survival of many reefs. However, there may be hope for some tropical reefs in the form of feathered friends. A new study has found that the presence of seabirds on islands adjacent to tropical coral reefs can boost coral growth rates on those reefs by more than double.

Chemistry: Inorganic Chemistry Engineering: Nanotechnology Physics: General Physics: Optics Physics: Quantum Physics
Published

Bowtie resonators that build themselves bridge the gap between nanoscopic and macroscopic      (via sciencedaily.com)     Original source 

Two nanotechnology approaches converge by employing a new generation of fabrication technology. It combines the scalability of semiconductor technology with the atomic dimensions enabled by self-assembly.

Biology: General Biology: Marine Biology: Microbiology Ecology: General Ecology: Nature Ecology: Research Ecology: Sea Life Environmental: Ecosystems Environmental: General Geoscience: Earth Science Geoscience: Environmental Issues Geoscience: Geography Geoscience: Oceanography
Published

Greenhouse gases in oceans are altered by climate change impact on microbes      (via sciencedaily.com)     Original source 

The ocean is a global life-support system, and climate change causes such as ocean warming, acidification, deoxygenation, and nitrogen-deposition alter the delicate microbial population in oceans. The marine microbial community plays an important role in the production of greenhouse gases like nitrous oxide and methane. Scientists have explored the climate change impact on marine microbes. Their research helps raise awareness about climate change severity and the importance of ocean resources.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Engineering: Graphene Physics: Optics
Published

Chemists create organic molecules in a rainbow of colors      (via sciencedaily.com)     Original source 

Chemists have now come up with a way to make molecules known as acenes more stable, allowing them to synthesize acenes of varying lengths. Using their new approach, they were able to build molecules that emit red, orange, yellow, green, or blue light, which could make acenes easier to deploy in a variety of applications.