Showing 20 articles starting at article 721

< Previous 20 articles        Next 20 articles >

Categories: Chemistry: Inorganic Chemistry, Ecology: Research

Return to the site home page

Chemistry: Biochemistry Chemistry: Inorganic Chemistry Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Ionic crystal generates molecular ions upon positron irradiation, finds new study      (via sciencedaily.com)     Original source 

The interaction between solid matter and positron (the antiparticle of electron) has provided important insights across a variety of disciplines, including atomic physics, materials science, elementary particle physics, and medicine. However, the experimental generation of positronic compounds by bombardment of positrons onto surfaces has proved challenging. In a new study, researchers detect molecular ion desorption from the surface of an ionic crystal when bombarded with positrons and propose a model based on positronic compound generation to explain their results.

Biology: Zoology Ecology: Invasive Species Ecology: Nature Ecology: Research
Published

Tropical ecosystems more reliant on emerging aquatic insects, study finds, potentially putting them at greater risk      (via sciencedaily.com)     Original source 

Researchers have found that tropical forest ecosystems are more reliant on aquatic insects than temperate forest ecosystems, making them more vulnerable to disruptions to the links between land and water. This is a significant finding, as tropical forests play a vital role in global biodiversity and climate regulation. The study's authors warn that any disruption to the land-water connections in these ecosystems could have serious consequences for their health and resilience.

Biology: Biochemistry Biology: Cell Biology Biology: General Biology: Marine Biology: Zoology Ecology: Research Ecology: Sea Life
Published

Consistent metabolism may prove costly for insects in saltier water      (via sciencedaily.com)     Original source 

Increased salinity usually spells trouble for freshwater insects like mayflies. A new study finds that the lack of metabolic responses to salinity may explain why some freshwater insects often struggle in higher salinity, while other freshwater invertebrates (like mollusks and crustaceans) thrive. 

Chemistry: Inorganic Chemistry Physics: Optics
Published

Groundbreaking study shows defects spreading through diamond faster than the speed of sound      (via sciencedaily.com)     Original source 

Settling a half century of debate, researchers have discovered that tiny linear defects can propagate through a material faster than sound waves do. These linear defects, or dislocations, are what give metals their strength and workability, but they can also make materials fail catastrophically ­– which is what happens every time you pop the pull tab on a can of soda. The fact that they can travel so fast gives scientists a new appreciation of the unusual types of damage they might do to a broad range of materials in extreme conditions.

Chemistry: Biochemistry Chemistry: Inorganic Chemistry Physics: Optics
Published

Physicists find evidence for magnetically bound excitons      (via sciencedaily.com)     Original source 

Physicists have experimentally detected how so-called Hubbard excitons form in real-time. 

Biology: Zoology Ecology: Nature Ecology: Research
Published

Bewick's swans choose wintering areas based on the weather      (via sciencedaily.com)     Original source 

Bewick’s swans fly less far during their autumn migration when the weather is warm. Climate change has therefore led to a shift in their common wintering areas. Now, for the first time, bird researchers have been able to use long-term GPS data to pinpoint the specific choices that individual swans make.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Geoscience: Environmental Issues Geoscience: Geochemistry Geoscience: Severe Weather
Published

Two-dimensional compounds can capture carbon from the air      (via sciencedaily.com)     Original source 

Some of the thinnest materials known to humankind -- MXene and MBene compounds -- may provide solutions to scientists in their quest to curb the effects of global warming. These substances are only a few atoms thick, making them two-dimensional. Because of their large surface area, the materials have the potential to absorb carbon dioxide molecules from the atmosphere, which could help reduce the harmful effects of climate change by safely sequestering carbon dioxide, according to a review study.

Biology: Biochemistry Biology: Cell Biology Biology: Evolutionary Biology: General Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Physics: General Space: Cosmology Space: General
Published

New 'Assembly Theory' unifies physics and biology to explain evolution and complexity      (via sciencedaily.com)     Original source 

An international team of researchers has developed a new theoretical framework that bridges physics and biology to provide a unified approach for understanding how complexity and evolution emerge in nature. This new work on 'Assembly Theory' represents a major advance in our fundamental comprehension of biological evolution and how it is governed by the physical laws of the universe.

Biology: Cell Biology Biology: General Biology: Zoology Computer Science: Artificial Intelligence (AI) Computer Science: General Ecology: Nature Ecology: Research Mathematics: Modeling
Published

Birders and AI push bird conservation to the next level      (via sciencedaily.com)     Original source 

Big data and artificial intelligence (AI) are being used to model hidden patterns in nature, not just for one bird species, but for entire ecological communities across continents. And the models follow each species’ full annual life cycle, from breeding to fall migration to non-breeding grounds, and back north again during spring migration.

Biology: Botany Biology: General Ecology: General Ecology: Invasive Species Ecology: Nature Ecology: Research Ecology: Trees Environmental: Biodiversity Environmental: Ecosystems Environmental: General Environmental: Water Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Carbon-capture tree plantations threaten tropical biodiversity for little gain, ecologists say      (via sciencedaily.com)     Original source 

The increasingly urgent climate crisis has led to a boom in commercial tree plantations in an attempt to offset excess carbon emissions. However, authors argue that these carbon-offset plantations might come with costs for biodiversity and other ecosystem functions. Instead, the authors say we should prioritize conserving and restoring intact ecosystems.

Chemistry: Biochemistry Chemistry: Inorganic Chemistry
Published

Electronic sensor the size of a single molecule a potential game-changer      (via sciencedaily.com)     Original source 

Researchers have developed a molecular-sized, more efficient version of a widely used electronic sensor, in a breakthrough that could bring widespread benefits.

Ecology: General Ecology: Nature Ecology: Research Environmental: Biodiversity Environmental: Ecosystems Environmental: General
Published

Improved mangrove conservation could yield cash, carbon, coastal benefits      (via sciencedaily.com)     Original source 

A shift in the way we think about the benefits mangroves provide to coastal regions could yield significant economic and biodiversity gains and protect millions from flooding, research has revealed.

Biology: Biochemistry Biology: Microbiology Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Energy: Technology
Published

Metal-loving microbes could replace chemical processing of rare earths      (via sciencedaily.com)     Original source 

Scientists have characterized the genome of a metal-loving bacteria with an affinity for rare earth elements. The research paves the way towards replacing the harsh chemical processing of these elements with a benign practice called biosorption.

Biology: General Biology: Microbiology Ecology: General Ecology: Research Environmental: Ecosystems Environmental: General Geoscience: Geochemistry
Published

Viruses dynamic and changing after dry soils are watered      (via sciencedaily.com)     Original source 

Viruses in soil may not be as destructive to bacteria as once thought and could instead act like lawnmowers, culling older cells and giving space for new growth, according to research.

Ecology: Extinction Ecology: General Ecology: Research Environmental: Ecosystems Offbeat: Earth and Climate Offbeat: Plants and Animals
Published

Study on mysterious Amazon porcupine can help its protection      (via sciencedaily.com)     Original source 

A recent study sheds new light on the elusive Roosmalens' dwarf porcupine, a poorly understood neotropical species. After 22 years of relative obscurity, this research uncovers vital information about its distribution, phylogenetics, and potential conservation threats, not only revealing its endemic presence in the Madeira biogeographical province but also expanding its known range in the southern Amazon.

Chemistry: Biochemistry Chemistry: Inorganic Chemistry
Published

Making elbow room: Giant molecular rotors operate in solid crystal      (via sciencedaily.com)     Original source 

Concave, umbrella-like metal complexes provide space to enable the largest molecular rotor operational in the solid-state.

Chemistry: Biochemistry Chemistry: Inorganic Chemistry Physics: General Physics: Optics
Published

Intense lasers shine new light on the electron dynamics of liquids      (via sciencedaily.com)     Original source 

The behavior of electrons in liquids is crucial to understanding many chemical processes that occur in our world. Using advanced lasers that operate at the attosecond, a team of international researchers has revealed further insights into how electrons behave in liquids.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Energy: Technology Engineering: Graphene Engineering: Nanotechnology
Published

Researchers dynamically tune friction in graphene      (via sciencedaily.com)     Original source 

The friction on a graphene surface can be dynamically tuned using external electric fields, according to researchers.

Chemistry: Inorganic Chemistry Engineering: Nanotechnology Physics: General Physics: Optics
Published

3D-printed plasmonic plastic enables large-scale optical sensor production      (via sciencedaily.com)     Original source 

Researchers have developed plasmonic plastic -- a type of composite material with unique optical properties that can be 3D-printed. This research has now resulted in 3D-printed optical hydrogen sensors that could play an important role in the transition to green energy and industry.