Showing 20 articles starting at article 301
< Previous 20 articles Next 20 articles >
Categories: Ecology: Extinction, Physics: Quantum Computing
Published Short X-ray pulses reveal the source of light-induced ferroelectricity in SrTiO3



Researchers have gained new insights into the development of the light-induced ferroelectric state in SrTiO3. They exposed the material to mid-infrared and terahertz frequency laser pulses and found that the fluctuations of its atomic positions are reduced under these conditions. This may explain why the dipolar structure is more ordered than in equilibrium and why the laser pulses induce a ferroelectric state in the material.
Published Scientists make breakthrough in quantum materials research



Researchers describe the discovery of a new method that transforms everyday materials like glass into materials scientists can use to make quantum computers.
Published Floating algae a raft for juvenile pelagic fish



Floating macroalgal acts as a raft that provides habitat for a diverse array of juvenile oceanic fish a new study has found. The study conducted in the Ningaloo Coast World Heritage Area, Western Australia, revealed that fish were more abundant around macroalgal rafts than in open water, with eleven species of juvenile fishes associated with Sargassum rafts, and one species of both juveniles and adults.
Published Researchers craft new way to make high-temperature superconductors -- with a twist



An international team has developed a new method to make and manipulate a widely studied class of high-temperature superconductors. This technique should pave the way for the creation of unusual forms of superconductivity in previously unattainable materials.
Published Superfluids could share characteristic with common fluids



Every fluid -- from Earth's atmosphere to blood pumping through the human body -- has viscosity, a quantifiable characteristic describing how the fluid will deform when it encounters some other matter. If the viscosity is higher, the fluid flows calmly, a state known as laminar. If the viscosity decreases, the fluid undergoes the transition from laminar to turbulent flow. The degree of laminar or turbulent flow is referred to as the Reynolds number, which is inversely proportional to the viscosity. However, this Reynolds similitude does not apply to quantum superfluids. A researcher has theorized a way to examine the Reynolds similitude in superfluids, which could demonstrate the existence of quantum viscosity in superfluids.
Published Small yet mighty: Showcasing precision nanocluster formation with molecular traps



Nanoclusters (NCs) of transition metals like cobalt or nickel have widespread applications in drug delivery and water purification, with smaller NCs exhibiting improved functionalities. Downsizing NCs is, however, usually challenging. Now, scientists have demonstrated functional NC formation with atomic-scale precision. They successfully grew cobalt NCs on flat copper surfaces using molecular arrays as traps. This breakthrough paves the way for advancements like single-atom catalysis and spintronics miniaturization.
Published Scientists pull off quantum coup



Scientists have discovered a first-of-its-kind material, a 3D crystalline metal in which quantum correlations and the geometry of the crystal structure combine to frustrate the movement of electrons and lock them in place.
Published Endangered seabird shows surprising individual flexibility to adapt to climate change



New research finds that individual behavioural flexibility and not evolutionary selection is driving the northward shift of Balearic shearwaters. The findings were revealed through a decade-long study which tagged individual birds. The results indicate that individual animals may have greater behavioural flexibility to respond to climate change impacts than previously thought.
Published Scientists develop novel method to estimate biodiversity loss in Singapore over the past two centuries



Scientists have employed novel statistical methods to reveal the extent of biodiversity loss in Singapore over the past two centuries. The study paints the most accurate picture to date of the ecological impact of deforestation and urban development in the tropical city-state. From a comprehensive dataset, the study estimated that Singapore has lost 37 per cent of its species.
Published Unexpected biodiversity on the ocean floor



Hydrothermal vents and manganese nodule fields in the deep oceans contain more biodiversity than expected.
Published Shining a light on the hidden properties of quantum materials



Certain materials have desirable properties that are hidden and scientists can use light to uncover these properties. Researchers have used an advanced optical technique, based on terahertz time-domain spectroscopy, to learn more about a quantum material called Ta2NiSe5 (TNS).
Published Researchers add a 'twist' to classical material design



Researchers grew a twisted multilayer crystal structure for the first time and measured the structure's key properties. The twisted structure could help researchers develop next-generation materials for solar cells, quantum computers, lasers and other devices.
Published What coffee with cream can teach us about quantum physics



A new advancement in theoretical physics could, one day, help engineers develop new kinds of computer chips that might store information for longer in very small objects.
Published Ancient brown bear genomes sheds light on Ice Age losses and survival



The brown bear is one of the largest living terrestrial carnivores, and is widely distributed across the Northern Hemisphere. Unlike many other large carnivores that went extinct at the end of the last Ice Age (cave bear, sabretoothed cats, cave hyena), the brown bear is one of the lucky survivors that made it through to the present. The question has puzzled biologists for close to a century -- how was this so?
Published Study offers rare long-term analysis of techniques for creating standing dead trees for wildlife habitat



Ecologists have long known that standing dead trees, commonly referred to as snags, are an important habitat element for forest dwellers and act as a driver of biodiversity. They're so important that in some managed forests, snag creation is part of the conservation tool kit -- i.e., crews sometimes convert a percentage of live trees into dead ones through techniques ranging from sawing off their tops to wounding their trunks to injecting them with disease-causing fungi.
Published Researchers find new multiphoton effect within quantum interference of light



An international team of researchers has disproved a previously held assumption about the impact of multiphoton components in interference effects of thermal fields (e.g. sunlight) and parametric single photons (generated in non-linear crystals).
Published Three-year population study supports fight to save Cameroon's Kordofan giraffe



Crucial new data about the numbers of Critically Endangered Kordofan giraffe living within Cameroon's B nou National Park has been released, supporting conservation efforts to save the subspecies from extinction.
Published A new perspective on the temperature inside tropical forests



New worldwide maps of temperatures inside tropical forests show that global warming affect different way in different parts of the forests. Undergrowth level temperature of the tropical forests can be even 4 degrees less than average temperature of the area.
Published New research sheds light on a phenomenon known as 'false vacuum decay'



Scientists have produced the first experimental evidence of vacuum decay.
Published The megalodon was less mega than previously believed



A new study shows the Megalodon, a gigantic shark that went extinct 3.6 million years ago, was more slender than earlier studies suggested. This finding changes scientists' understanding of Megalodon behavior, ancient ocean life, and why the sharks went extinct.