Showing 20 articles starting at article 461
< Previous 20 articles Next 20 articles >
Categories: Chemistry: Inorganic Chemistry, Ecology: Trees
Published Molecules exhibit non-reciprocal interactions without external forces



Researchers have discovered that molecules experience non-reciprocal interactions without external forces. Fundamental forces such as gravity and electromagnetism are reciprocal, where two objects are attracted to each other or are repelled by each other. In our everyday experience, however, interactions don t seem to follow this reciprocal law.
Published Western Cascades landscapes in Oregon historically burned more often than previously thought



Forests on the west slope of Oregon's Cascade Range experienced fire much more often between 1500 and 1895 than had been previously thought.
Published New reptile on the block: A new iguana species discovered in China



Researchers have identified a new iguana species, Wang's garden lizard (Calotes wangi), in southern China and northern Vietnam. This species, part of the Calotes versicolor complex, was discovered through extensive surveys conducted from 2009 to 2022. Measuring less than 9 cm with an orange tongue, it inhabits subtropical and tropical forests, thriving in various landscapes including urban areas.
Published Novel catalyst system for CO2 conversion



Researchers are constantly pushing the limits of technology by breaking new ground in CO2 conversion. Their goal is to turn the harmful greenhouse gas into a valuable resource. A novel catalyst system could help reach that goal.
Published How national policies affect forests in border regions



How do national policies impact deforestation? Researchers have looked into this question at the global scale and have found that, contrary to common assumptions, national strategies have a significant -- and visible -- influence on efforts to protect forest heritage.
Published Blue PHOLEDs: Final color of efficient OLEDs finally viable in lighting



Lights could soon use the full color suite of perfectly efficient organic light-emitting diodes, or OLEDs, that last tens of thousands of hours. The new phosphorescent OLEDs, commonly referred to as PHOLEDs, can maintain 90% of the blue light intensity for 10-14 times longer than other designs that emit similar deep blue colors. That kind of lifespan could finally make blue PHOLEDs hardy enough to be commercially viable in lights that meet the Department of Energy's 50,000-hour lifetime target. Without a stable blue PHOLED, OLED lights need to use less-efficient technology to create white light.
Published Are diamonds GaN's best friend? Revolutionizing transistor technology



A research team has fabricated a gallium nitride (GaN) transistor using diamond, which of all natural materials has the highest thermal conductivity on earth, as a substrate, and they succeeded in increasing heat dissipation by more than two times compared with conventional transistors. The transistor is expected to be useful not only in the fields of 5G communication base stations, weather radar, and satellite communications, but also in microwave heating and plasma processing.
Published Tree plantations can get better with age -- but original habitats are best



Older tree plantations can be more attractive to animals who are looking for a new home than younger plantations, according to a new study. In the tropics, older plantations also welcome a greater variety of different plants and animals -- though sadly, Christmas tree plantations do not become more biodiverse over time.
Published New larks revealed in Africa



Researchers have studied the relationships between five closely related species of larks that occur in Africa south of the Sahara. Two of these have not been observed for decades, so the researchers analyzed DNA from museum specimens, some of which were over 100 years old.
Published An electrifying improvement in copper conductivity



A newly developed, highly conductive copper wire could find applications in the electric grid, as well as in homes and businesses. The finding defies what's been thought about how metals conduct electricity.
Published New strategy reveals 'full chemical complexity' of quantum decoherence



Scientists have developed a method to extract the spectral density for molecules in solvent using simple resonance Raman experiments -- a method that captures the full complexity of chemical environments.
Published Scientists tackle difficult-to-recycle thermoset polymers



A team of scientists has got a step closer to making several different types of plastic much easier to recycle, using a method that could be applied to a whole range of difficult-to-recycle polymers, including rubbers, gels and adhesives.
Published First observation of how water molecules move near a metal electrode



A collaborative team of experimental and computational physical chemists has made an important discovery in the field of electrochemistry, shedding light on the movement of water molecules near metal electrodes. This research holds profound implications for the advancement of next-generation batteries utilizing aqueous electrolytes.
Published For this emergent class of materials, 'solutions are the problem'



Materials scientists developed a fast, low-cost, scalable method to make covalent organic frameworks (COFs), a class of crystalline polymers whose tunable molecular structure, large surface area and porosity could be useful in energy applications, semiconductor devices, sensors, filtration systems and drug delivery.
Published Computational model captures the elusive transition states of chemical reactions



Researchers developed a way to quickly calculate the transition state structure of a chemical reaction, using machine-learning models.
Published Upcycling leftover cardboard to make a new type of foam packaging



With the holiday season in full swing, gifts of all shapes and sizes are being shipped around the world. But all that packaging generates lots of waste, including cardboard boxes and plastic-based foam cushioning. Rather than discard those boxes, researchers have developed a cushioning foam from cardboard waste. Their upcycled material was stronger and more insulating than traditional, plastic foam-based cushioning.
Published Researchers find way to weld metal foam without melting its bubbles



Researchers have identified a welding technique that can be used to join composite metal foam (CMF) components together without impairing the properties that make CMF desirable. CMFs hold promise for a wide array of applications because the pockets of air they contain make them light, strong and effective at insulating against high temperatures.
Published Researchers create stable hybrid laser by 3D printing micro-optics onto fibers



For the first time, researchers have shown that 3D-printed polymer-based micro-optics can withstand the heat and power levels that occur inside a laser. The advance enables inexpensive compact and stable laser sources that would be useful in a variety of applications, including the lidar systems used for autonomous vehicles.
Published Trees in wetter regions more sensitive to drought



This holiday season brings surprising news about your Christmas tree. Scientists just discovered that globally, trees growing in wetter regions are more sensitive to drought. That means if your tree hails from a more humid clime, it's likely been spoiled for generations.
Published How forests smell -- a risk for the climate?



Plants emit odors for a variety of reasons, such as to communicate with each other, to deter herbivores or to respond to changing environmental conditions. An interdisciplinary team of researchers carried out a study to investigate how biodiversity influences the emission of these substances. For the first time, they were able to show that species-rich forests emit less of these gases into the atmosphere than monocultures. It was previously assumed that species-rich forests release more emissions. The Leipzig team has now been able to disprove this assumption experimentally.