Showing 20 articles starting at article 781

< Previous 20 articles        Next 20 articles >

Categories: Chemistry: Inorganic Chemistry, Ecology: Trees

Return to the site home page

Chemistry: General Chemistry: Inorganic Chemistry Environmental: General Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Chemists tackle the tough challenge of recycling mixed plastics      (via sciencedaily.com)     Original source 

Polymer chemists have been finding ways to tackle the environmental problems humans have created with plastics waste. Now, a team has come up with fundamental new chemistry that seeds a creative solution to the challenge of recycling mixed-use plastics.

Chemistry: Inorganic Chemistry Computer Science: Quantum Computers Offbeat: Computers and Math Offbeat: General Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Tunneling electrons      (via sciencedaily.com)     Original source 

By superimposing two laser fields of different strengths and frequency, the electron emission of metals can be measured and controlled precisely to a few attoseconds. Physicists have shown that this is the case. The findings could lead to new quantum-mechanical insights and enable electronic circuits that are a million times faster than today.

Biology: Botany Ecology: General Ecology: Invasive Species Ecology: Nature Ecology: Research Ecology: Trees Environmental: Ecosystems Environmental: General Geoscience: Environmental Issues Geoscience: Geography
Published

How the Amazon rainforest is likely to cope with the effect of future drought      (via sciencedaily.com)     Original source 

A major collaboration involving 80 scientists from Europe and South America has identified the regions of the Amazon rainforest where trees are most likely to face the greatest risk from drier conditions brought about by climate change. Based on the analysis, the scientists predict trees in the western and southern Amazon face the greatest risk of dying. They also warn that previous scientific investigations may have underestimated the impact of drought on the rainforest because those studies focused on the central-eastern part of the forest, which is the least vulnerable to drought.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Energy: Alternative Fuels Environmental: General Geoscience: Environmental Issues Geoscience: Geochemistry
Published

New chemistry can extract virgin-grade materials from wind turbine blades in one process      (via sciencedaily.com)     Original source 

Researchers have developed a chemical process that can disassemble the epoxy composite of wind turbine blades and simultaneously extract intact glass fibers as well as one of the epoxy resin's original building blocks in a high quality. The recovered materials could potentially be used in the production of new blades.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Energy: Fossil Fuels Environmental: General Environmental: Water Geoscience: Environmental Issues Geoscience: Geochemistry
Published

CO2 recycling: What is the role of the electrolyte?      (via sciencedaily.com)     Original source 

The greenhouse gas carbon dioxide can be converted into useful hydrocarbons by electrolysis. The design of the electrolysis cell is crucial in this process. The so-called zero-gap cell is particularly suitable for industrial processes. But there are still problems: The cathodes clog up quickly.

Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry
Published

Researchers team up with national lab for innovative look at copper reactions      (via sciencedaily.com)     Original source 

Researchers are working to get a better look at how peroxides on the surface of copper oxide promote the oxidation of hydrogen but inhibit the oxidation of carbon monoxide, allowing them to steer oxidation reactions.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Computer Science: General Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Quantum computer applied to chemistry      (via sciencedaily.com)     Original source 

There are high expectations that quantum computers may deliver revolutionary new possibilities for simulating chemical processes. This could have a major impact on everything from the development of new pharmaceuticals to new materials. Researchers have now used a quantum computer to undertake calculations within a real-life case in chemistry.

Chemistry: Inorganic Chemistry Engineering: Nanotechnology
Published

Stab-resistant fabric gains strength from carbon nanotubes, polyacrylate      (via sciencedaily.com)     Original source 

Fabrics that resist knife cuts can help prevent injuries and save lives. But a sharp enough knife or a very forceful jab can get through some of these materials. Now, researchers report that carbon nanotubes and polyacrylate strengthen conventional aramid to produce lightweight, soft fabrics that provide better protection. Applications include anti-stabbing clothing, helmets and insoles, as well as cut-resistant packaging.

Chemistry: Biochemistry Chemistry: Inorganic Chemistry Physics: General Physics: Quantum Physics
Published

Physicists find unusual waves in nickel-based magnet      (via sciencedaily.com)     Original source 

Perturbing electron spins in a magnet usually results in excitations called 'spin waves' that ripple through the magnet like waves moving across the surface of a pond that's been struck by a pebble. Physicists have now discovered dramatically different excitations called 'spin excitons' that can also 'ripple' through a nickel-based magnet as a coherent wave.

Chemistry: Inorganic Chemistry Chemistry: Thermodynamics
Published

Even as temperatures rise, this hydrogel material keeps absorbing moisture      (via sciencedaily.com)     Original source 

Engineers find the hydrogel polyethylene glycol (PEG) doubles its water absorption as temperatures climb from 25 to 50 C, and could be useful for passive cooling or water harvesting in warm climates.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Thermodynamics Energy: Alternative Fuels Engineering: Nanotechnology Environmental: General Geoscience: Environmental Issues Geoscience: Geochemistry Physics: General Physics: Optics
Published

Chemists propose ultrathin material for doubling solar cell efficiency      (via sciencedaily.com)     Original source 

Researchers are studying radical new ways to improve solar power and provide more options for the industry to explore. Chemists are proposing to make solar cells using not silicon, but an abundantly available natural material called molybdenum disulfide. Using a creative combination of photoelectrochemical and spectroscopic techniques, the researchers conducted a series of experiments showing that extremely thin films of molybdenum disulfide display unprecedented charge carrier properties that could someday drastically improve solar technologies.

Biology: Botany Biology: General Ecology: Endangered Species Ecology: Extinction Ecology: General Ecology: Invasive Species Ecology: Nature Ecology: Research Ecology: Trees Environmental: Biodiversity Environmental: Ecosystems Environmental: General Geoscience: Earth Science Geoscience: Environmental Issues Paleontology: Climate
Published

The diversity of present tree species is shaped by climate change in the last 21,000 years      (via sciencedaily.com)     Original source 

A new global survey of 1000 forest areas shows how climate change since the peak of the last ice age has had a major impact on the diversity and distribution of tree species we see today. The results can help us predict how ecosystems will react to future changes, thus having an impact on conservation management around the globe.

Chemistry: Inorganic Chemistry Engineering: Graphene Engineering: Nanotechnology Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Physicists discover transformable nano-scale electronic devices      (via sciencedaily.com)     Original source 

The nano-scale electronic parts in devices like smartphones are solid, static objects that once designed and built cannot transform into anything else. But physicists have reported the discovery of nano-scale devices that can transform into many different shapes and sizes even though they exist in solid states.

Chemistry: Inorganic Chemistry
Published

Researchers successfully establish a strong mechanical bond of immiscible iron and magnesium      (via sciencedaily.com)     Original source 

Transport relies heavily on steel. But steel is heavy, and scientists are turning to alternatives to lessen the transportation industry's carbon emissions. Magnesium alloys are one such alternative. But developing bonding technology that bonds magnesium alloys with structural steels has been severely limited because magnesium and iron are immiscible. Now, a research group has established a dealloying bonding technology that obtains a strong mechanical bond between iron and magnesium.

Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Thermodynamics Energy: Alternative Fuels Environmental: General Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Gentle method allows for eco-friendly recycling of solar cells      (via sciencedaily.com)     Original source 

By using a new method, precious metals can be efficiently recovered from thin-film solar cells. The method is also more environmentally friendly than previous methods of recycling and paves the way for more flexible and highly efficient solar cells.

Biology: General Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Thermodynamics Environmental: General Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Chemists redesign biological PHAs, 'dream' biodegradable plastics      (via sciencedaily.com)     Original source 

They've been called 'dream' plastics: polyhydroxyalkanoates, or PHAs. Already the basis of a fledgling industry, they're a class of polymers naturally created by living microorganisms, or synthetically produced from biorenewable feedstocks. They're biodegradable in the ambient environment, including oceans and soil.

Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Physics: Optics
Published

Luminous molecules      (via sciencedaily.com)     Original source 

Twisted molecules play an important role in the development of organic light-emitting diodes. A team of chemists has managed to create these compounds with exactly the three-dimensional structure that they wanted. In so doing, they are smoothing the path for new and better light sources.

Chemistry: Inorganic Chemistry Environmental: Water Geoscience: Environmental Issues
Published

Your fork could someday be made of sugar, wood powders and degrade on-demand      (via sciencedaily.com)     Original source 

Single-use hard plastics are all around us: utensils, party decorations and food containers, to name a few examples. These items pile up in landfills, and many biodegradable versions stick around for months, requiring industrial composting systems to fully degrade. Now, researchers have created a sturdy, lightweight material that disintegrates on-demand -- and they made it from sugar and wood-derived powders.