Showing 20 articles starting at article 801

< Previous 20 articles        Next 20 articles >

Categories: Chemistry: Inorganic Chemistry, Ecology: Trees

Return to the site home page

Biology: Biochemistry Biology: Cell Biology Biology: General Chemistry: Biochemistry Chemistry: Inorganic Chemistry Ecology: Sea Life Engineering: Nanotechnology Physics: Optics
Published

Pollution monitoring through precise detection of gold nanoparticles in woodlice      (via sciencedaily.com)     Original source 

Researchers introduce a novel imaging method to detect gold nanoparticles in woodlice. Their method, known as four-wave mixing microscopy, flashes light that the gold nanoparticles absorb. The light flashes again and the subsequent scattering reveals the nanoparticles' locations. With information about the quantity, location, and impact of gold nanoparticles within the organism, scientists can better understand the potential harm other metals may have on nature.

Biology: Biochemistry Biology: Botany Biology: General Ecology: Invasive Species Ecology: Nature Ecology: Trees Environmental: Biodiversity Environmental: Ecosystems Environmental: General Geoscience: Severe Weather
Published

Trees in areas prone to hurricanes have strong ability to survive even after severe damage      (via sciencedaily.com)     Original source 

The island of Dominica took a direct hit from Category 5 Hurricane Maria. Nine months afterward, researchers found that while 89% percent of trees located in nine previously documented forest stands were damaged, but only 10 percent had immediately died. The most common damage was stem snapping and major branch damage. The damage with the highest rates of mortality were uprooting and being crushed by a neighboring tree. Large individual trees and species with lower wood density were susceptible to snapping, uprooting and mortality. Those on steeper slopes were more prone to being crushed by neighboring trees.

Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry
Published

Scientists use peroxide to peer into metal oxide reactions      (via sciencedaily.com)     Original source 

Researchers to get a better look at how peroxides on the surface of copper oxide promote the oxidation of hydrogen but inhibit the oxidation of carbon monoxide, allowing them to steer oxidation reactions.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Physics: Optics
Published

Toward tunable molecular switches from organic compounds      (via sciencedaily.com)     Original source 

Newly synthesized organic molecules can be tuned to emit different colors depending on their molecular structures in crystal form.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Engineering: Nanotechnology Mathematics: Modeling Physics: General
Published

New atomic-scale understanding of catalysis could unlock massive energy savings      (via sciencedaily.com)     Original source 

In an advance they consider a breakthrough in computational chemistry research, chemical engineers have developed a model of how catalytic reactions work at the atomic scale. This understanding could allow engineers and chemists to develop more efficient catalysts and tune industrial processes -- potentially with enormous energy savings, given that 90% of the products we encounter in our lives are produced, at least partially, via catalysis.

Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Energy: Technology Environmental: General Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Long-forgotten equation provides new tool for converting carbon dioxide      (via sciencedaily.com)     Original source 

To manage atmospheric carbon dioxide and convert the gas into a useful product, scientists have dusted off an archaic -- now 120 years old -- electrochemical equation.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Engineering: Nanotechnology Physics: General
Published

Two-dimensional nanoparticles with great potential      (via sciencedaily.com)     Original source 

A research team has discovered how catalysts and many other nanoplatelets can be produced in an environmentally friendly way from readily available materials and in sufficient quantities.

Biology: Botany Ecology: Invasive Species Ecology: Nature Ecology: Trees Environmental: Ecosystems Environmental: General Geoscience: Environmental Issues
Published

US forests face an unclear future with climate change      (via sciencedaily.com)     Original source 

Climate change might compromise how permanently forests are able to store carbon and keep it out of the air. In a new study, researchers found that the regions most at risk to lose forest carbon through fire, climate stress or insect damage are those regions where many forest carbon offset projects have been set up. The authors assert that there's an urgent need to update these carbon offsets protocols and policies.

Chemistry: Inorganic Chemistry Energy: Technology Engineering: Graphene Physics: General
Published

Discovery of ferroelectricity in an elementary substance      (via sciencedaily.com)     Original source 

Researchers have discovered a new single-element ferroelectric material that alters the current understanding of conventional ferroelectric materials and has future applications in data storage devices.

Biology: Biochemistry Ecology: Invasive Species Ecology: Nature Ecology: Trees Environmental: Ecosystems Environmental: General Geoscience: Environmental Issues Geoscience: Geochemistry Geoscience: Severe Weather
Published

Gone for good? California's beetle-killed, carbon-storing pine forests may not come back      (via sciencedaily.com)     Original source 

Ponderosa pine forests in the Sierra Nevada that were wiped out by western pine beetles during the 2012-2015 megadrought won't recover to pre-drought densities, reducing an important storehouse for atmospheric carbon.

Chemistry: Inorganic Chemistry Physics: General Physics: Optics
Published

A new type of photonic time crystal gives light a boost      (via sciencedaily.com)     Original source 

Researchers have developed a way to create photonic time crystals and shown that these bizarre, artificial materials amplify the light that shines on them. These findings could lead to more efficient and robust wireless communications and significantly improved lasers.

Chemistry: General Chemistry: Inorganic Chemistry Environmental: General Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Opening a new frontier: PdMo intermetallic catalyst for promoting CO2 utilization      (via sciencedaily.com)     Original source 

A recently discovered catalyst, can convert carbon dioxide (CO2) into useful methanol at room temperature and low-pressure conditions. This novel compound, which is thermally and chemically stable in air, represents a new milestone in CO2 conversion via hydrogenation and could be key to slow down climate change.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Environmental: General Geoscience: Geochemistry
Published

Scientists use computational modeling to design 'ultrastable' materials      (via sciencedaily.com)     Original source 

Researchers developed a computational approach to predict which metal-organic framework (MOF) structures will be the most stable, and therefore the best candidates for applications such as capturing greenhouse gases.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Geoscience: Geochemistry
Published

Discovery of crucial clue to accelerate development of carbon-neutral porous materials      (via sciencedaily.com)     Original source 

A recent study has provided a library of those various molecular clusters for future metal building blocks of MOFs, and suggested practical synthetic strategies.

Biology: Biochemistry Biology: General Biology: Zoology Ecology: Animals Ecology: Endangered Species Ecology: Extinction Ecology: Invasive Species Ecology: Nature Ecology: Trees Environmental: Biodiversity Environmental: Ecosystems
Published

Insect decline also occurs in forests      (via sciencedaily.com)     Original source 

The number of insects has been declining for years. This has already been well documented for agricultural areas. In forests, however, temporal trends are mostly studied for insect species that are considered pests. Now, a research team has studied the trends of very many insect species in German forests. Contrary to what the researchers had suspected, the results showed that the majority of the studied species are declining.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Energy: Batteries Energy: Technology
Published

Major storage capacity in water-based batteries      (via sciencedaily.com)     Original source 

Chemical engineers have discovered a 1,000% difference in the storage capacity of metal-free, water-based battery electrodes.

Chemistry: Inorganic Chemistry Physics: Optics Space: Exploration Space: General
Published

Researchers devise new membrane mirrors for large space-based telescopes      (via sciencedaily.com)     Original source 

Researchers have developed a new way to produce and shape large, high-quality mirrors that are much thinner than the primary mirrors previously used for telescopes deployed in space. The resulting mirrors are flexible enough to be rolled up and stored compactly inside a launch vehicle and then reshaped after deployment.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Engineering: Graphene Geoscience: Geochemistry
Published

Strong ultralight material could aid energy storage, carbon capture      (via sciencedaily.com)     Original source 

Materials scientists showed that fine-tuning interlayer interactions in a class of 2D polymers can determine the materials' loss or retention of desirable mechanical properties in multilayer or bulk form.

Chemistry: Inorganic Chemistry Chemistry: Thermodynamics
Published

Thermal paint: MXene spray coating can harness infrared radiation for heating or cooling      (via sciencedaily.com)     Original source 

An international team of researchers has found that a thin coating of MXene -- a type of two-dimensional nanomaterial -- could enhance a material's ability to trap or shed heat. The discovery, which is tied to MXene's ability to regulate the passage of ambient infrared radiation, could lead to advances in thermal clothing, heating elements and new materials for radiative heating and cooling.