Showing 20 articles starting at article 321

< Previous 20 articles        Next 20 articles >

Categories: Ecology: Trees, Energy: Nuclear

Return to the site home page

Ecology: Trees Environmental: Ecosystems
Published

Life cycle of tree roots      (via sciencedaily.com)     Original source 

Scientists have developed a method for the direct observation of fine roots, which control the uptake of nutrients and water by trees. This provides a valuable addition to the existing knowledge of carbon and nutrient cycling in the forest floor, leading to further understanding of the carbon cycle from the view point of initial carbon input into the soil and aiding forest management and soil conservation.

Ecology: Trees
Published

UV-to-red light converting films accelerate plant growth      (via sciencedaily.com)     Original source 

Plastic sheets coated with an Eu3+ film that converts UV light to red light were able to accelerate growth of vegetal plants and trees.

Ecology: Trees Space: Structures and Features Space: The Solar System
Published

Tree rings offer insight into devastating radiation storms      (via sciencedaily.com) 

A new study has shed new light on a mysterious, unpredictable and potentially devastating kind of astrophysical event.

Ecology: Trees
Published

By leaving garden waste alone, we could store 600,000 tons of CO2 per year      (via sciencedaily.com)     Original source 

Danes shuttle nearly a million tons of garden waste from their gardens every year. But we would be doing the climate a great service if we just left it alone, according to the new calculations. At the same time, leaves and other garden waste are a boon for backyard biodiversity and soil.

Ecology: Trees Environmental: Ecosystems Environmental: Wildfires
Published

Forest recovery after Montana's 2017 fire season      (via sciencedaily.com)     Original source 

Researchers found thousands of seedlings growing after recent fires in Montana, especially at sites with cooler, damper conditions -- often found in the shade of the dead trees and upper canopy, as well as on the north side of mountains with higher elevations and more undergrowth. Researchers found fewer seedlings at sites with less shade and drier, hotter conditions.

Energy: Nuclear
Published

Physicists confirm hitch in proton structure      (via sciencedaily.com) 

A new precision measurement of the proton's electric polarizability has confirmed an unexplained bump in the data. The proton's electric polarizability shows how susceptible the proton is to deformation, or stretching, in an electric field. Like size or charge, the electric polarizability is a fundamental property of proton structure. The data bump was widely thought to be a fluke when seen in earlier measurements, so this new, more precise measurement confirms the presence of the anomaly and signals that an unknown facet of the strong force may be at work.

Energy: Nuclear
Published

Our brains use quantum computation      (via sciencedaily.com) 

A team of scientists believe our brains could use quantum computation, after adapting an idea developed to prove the existence of quantum gravity to explore the human brain and its workings. The brain functions measured were also correlated to short-term memory performance and conscious awareness, suggesting quantum processes are also part of cognitive and conscious brain functions. Quantum brain processes could explain why we can still outperform supercomputers when it comes to unforeseen circumstances, decision making, or learning something new, while the discovery may also shed light on consciousness, the workings of which remain scientifically difficult to understand and explain.

Energy: Nuclear
Published

Hackmanite mineral changes color also upon exposure to nuclear radiation      (via sciencedaily.com) 

Researchers have long studied the color-changing properties of the natural mineral hackmanite upon exposure to UV radiation or X-rays. Now, the research group studied the reactions of synthetic hackmanite to nuclear radiation. The researchers discovered a one-of-a-kind and novel intelligent quality, gamma exposure memory, which allows the use of hackmanite as e.g. radiation detector.

Energy: Nuclear
Published

Pushing the boundaries of chemistry: Properties of heaviest element studied so far measured at GSI/FAIR      (via sciencedaily.com) 

Researchers have gained new insights into the chemical properties of the superheavy element flerovium -- element 114 -- at the accelerator facilities of the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt. The measurements show that flerovium is the most volatile metal in the periodic table.

Energy: Nuclear
Published

Less risk, less costs: Portable spectroscopy devices could soon become real      (via sciencedaily.com) 

Nuclear magnetic resonance (NMR) is an analytical tool with a wide range of applications, including the magnetic resonance imaging that is used for diagnostic purposes in medicine. However, NMR often requires powerful magnetic fields to be generated, which limits the scope of its use. Researchers have now discovered potential new ways to reduce the size of the corresponding devices and also the possible associated risk by eliminating the need for strong magnetic fields. This is achieved by combining so-called zero- to ultralow-field NMR with a special hyperpolarization technique.

Energy: Nuclear
Published

Particles pick pair partners differently in small nuclei      (via sciencedaily.com) 

The protons and neutrons that build the nucleus of the atom frequently pair up. Now, a new high-precision experiment has found that these particles may pick different partners depending on how packed the nucleus is. The data also reveal new details about short-distance interactions between protons and neutrons in nuclei and may impact results from experiments seeking to tease out further details of nuclear structure.

Energy: Nuclear
Published

Elemental research: Scientists apply boron to tungsten components in fusion facilities      (via sciencedaily.com) 

Scientists at have conducted research showing that a powder dropper can successfully drop boron powder into high-temperature plasma within tokamaks that have parts made of a heat-resistant material known as tungsten.

Energy: Nuclear Engineering: Graphene
Published

The electron slow motion: Ion physics on the femtosecond scale      (via sciencedaily.com) 

How do different materials react to the impact of ions? This is a question that plays an important role in many areas of research -- for example in nuclear fusion research, when the walls of the fusion reactor are bombarded by high-energy ions. However, it is difficult to understand the temporal sequence of such processes. A research group has now succeeded in analyzing on a time scale of one femtosecond what happens to the individual particles involved when an ion penetrates materials such as graphene or molybdenum disulphide.

Energy: Nuclear
Published

2D array of electron and nuclear spin qubits opens new frontier in quantum science      (via sciencedaily.com) 

By using photons and electron spin qubits to control nuclear spins in a two-dimensional material, researchers have opened a new frontier in quantum science and technology, enabling applications like atomic-scale nuclear magnetic resonance spectroscopy, and to read and write quantum information with nuclear spins in 2D materials.

Energy: Nuclear
Published

Upgrade for magnetic resonance methods with a 1,000-fold amplifier      (via sciencedaily.com) 

Researchers determine the structure and dynamics of proteins using NMR (Nuclear Magnetic Resonance) spectroscopy. Until now, however, much higher concentrations were necessary for in-vitro measurements of the biomolecules in solution than found in our body's cells. An NMR method enhanced by a very powerful amplifier, in combination with molecular dynamics simulation, now enables their detection and accurate characterization at physiological concentrations.

Energy: Nuclear
Published

A better way to quantify radiation damage in materials      (via sciencedaily.com) 

Researchers find much of the damage inside nuclear reactors is so small that it has eluded previous tests. Their new tool provides a way to directly measure this damage, potentially opening a path for the safe operation of nuclear power plants far beyond their present licensed lifetimes.

Energy: Nuclear
Published

Suspended sediment reduced by rapid revegetation after Fukushima decontamination      (via sciencedaily.com) 

Researchers have found that soil decontamination efforts following the Fukushima nuclear accident resulted in constant, high levels of suspended river sediment downstream, but a rapid decrease in the amount of particulate radiocesium. Additionally, the rapid recovery of vegetation reduced the duration of unsustainable sediment effects. Future remediation projects should assess the natural restoration ability of local landscapes, and include appropriate revegetation measures to reduce the effects on downstream environments.

Energy: Nuclear
Published

Listening to the people results in a more sustainable future energy system      (via sciencedaily.com) 

By taking into account the demographics and preferences of US racial groups, clarified through a nationally representative survey of 3,000 US residents, researchers have created a 'desirable' electricity generation mix for 2050 that includes 50% more energy from renewables than current projections. Combining such bottom-up input with top-down energy system goals set by policymakers could help meet both the needs and preferences of the population along with emission and climate goals.

Energy: Nuclear
Published

Smaller, stronger magnets could improve devices that harness the fusion power of the sun and stars      (via sciencedaily.com) 

PPPL researchers have found a way to build powerful magnets smaller than before, aiding the design and construction of machines that could help the world harness the power of the sun to create electricity without producing greenhouse gases that contribute to climate change.

Energy: Nuclear
Published

Chemists unlock secrets of molten salts      (via sciencedaily.com) 

Researchers have come up with a novel way to study the thermodynamic properties of molten salts, which are used in many nuclear and solar energy applications.