Showing 20 articles starting at article 141
< Previous 20 articles Next 20 articles >
Categories: Ecology: Trees, Engineering: Graphene
Published New larks revealed in Africa



Researchers have studied the relationships between five closely related species of larks that occur in Africa south of the Sahara. Two of these have not been observed for decades, so the researchers analyzed DNA from museum specimens, some of which were over 100 years old.
Published An electrifying improvement in copper conductivity



A newly developed, highly conductive copper wire could find applications in the electric grid, as well as in homes and businesses. The finding defies what's been thought about how metals conduct electricity.
Published Ultrafast lasers map electrons 'going ballistic' in graphene, with implications for next-gen electronic devices



Research reveals the ballistic movement of electrons in graphene in real time. The observations could lead to breakthroughs in governing electrons in semiconductors, fundamental components in most information and energy technology.
Published Trees in wetter regions more sensitive to drought



This holiday season brings surprising news about your Christmas tree. Scientists just discovered that globally, trees growing in wetter regions are more sensitive to drought. That means if your tree hails from a more humid clime, it's likely been spoiled for generations.
Published How forests smell -- a risk for the climate?



Plants emit odors for a variety of reasons, such as to communicate with each other, to deter herbivores or to respond to changing environmental conditions. An interdisciplinary team of researchers carried out a study to investigate how biodiversity influences the emission of these substances. For the first time, they were able to show that species-rich forests emit less of these gases into the atmosphere than monocultures. It was previously assumed that species-rich forests release more emissions. The Leipzig team has now been able to disprove this assumption experimentally.
Published Twenty-year study confirms California forests are healthier when burned -- or thinned



A 20-year experiment in the Sierra Nevada confirms that different forest management techniques -- prescribed burning, restoration thinning or a combination of both -- are effective at reducing the risk of catastrophic wildfire in California. These treatments also improve forest health, making trees more resilient to stressors like drought and bark beetles, and they do not negatively impact plant or wildlife biodiversity within individual tree stands, the research found.
Published Nature and animal emojis don't accurately represent natural biodiversity



The current emoji library doesn't accurately represent the 'tree of life' and the breadth of biodiversity seen in nature according to a new analysis. A team of conservation biologists categorized emojis related to nature and animals and mapped them onto the phylogenetic tree of life. They found that animals are well represented by the current emoji catalog, whereas plants, fungi, and microorganisms are poorly represented. Within the animal kingdom, vertebrates were over-represented while arthropods were underrepresented with respect to their actual biodiversity.
Published Chemists create organic molecules in a rainbow of colors



Chemists have now come up with a way to make molecules known as acenes more stable, allowing them to synthesize acenes of varying lengths. Using their new approach, they were able to build molecules that emit red, orange, yellow, green, or blue light, which could make acenes easier to deploy in a variety of applications.
Published Recycling concrete using carbon can reduce emissions and waste



Amid the rubble of large-sale earthquake, war or other disaster -- and as ageing buildings and infrastructure are replaced -- mountains of concrete are often taken to landfill or pounded into rubble for roads. For a more sustainable approach, experts are developing a 'value add' for old broken concrete to 'upcycling' coarse aggregate to produce a strong, durable and workable concrete using a small amount of a secret ingredient -- graphene.
Published Tiny electromagnets made of ultra-thin carbon



Graphene, that is extremely thin carbon, is considered a true miracle material. An international research team has now added another facet to its diverse properties with new experiments: Experts fired short terahertz pulses at micrometer-sized discs of graphene, which briefly turned these minuscule objects into surprisingly strong magnets. This discovery may prove useful for developing future magnetic switches and storage devices.
Published Crocodile family tree mapped: New light shed on croc evolution



Around 250 million years ago, 700 species of reptiles closely related to the modern-day crocodile roamed the earth, now new research reveals how a complex interplay between climate change, species competition and habitat can help explain why just 23 species of crocodile survive today.
Published Public gardens contribute to invasives problem



Some nonnative plants cultivated in public gardens or arboretums are escaping to become invasive in wild forests.
Published 600 years of tree rings reveal climate risks in California



The San Joaquin Valley in California has experienced vast variability in climate extremes, with droughts and floods that were more severe and lasted longer than what has been seen in the modern record, according to a new study of 600 years of tree rings from the valley.
Published The Fens of eastern England once held vast woodlands



The Fens of eastern England, a low-lying, extremely flat landscape dominated by agricultural fields, was once a vast woodland filled with huge yew trees, according to new research. Scientists have studied hundreds of tree trunks, dug up by Fenland farmers while ploughing their fields. The team found that most of the ancient wood came from yew trees that populated the area between four and five thousand years ago.
Published Looking for 'LUCA' and the timing of cellular evolution



LUCA, the 'last universal common ancestor' of all living organisms, lived 4.32 to at most 4.52 billion years ago. What LUCA looked like is unknown, but it must have been a cell with among others ribosomal proteins and an ATP synthase.
Published Forest modeling shows which harvest rotations lead to maximum carbon sequestration



Forest modeling shows that a site's productivity -- an indicator of how fast trees grow and how much biomass they accumulate -- is the main factor that determines which time period between timber harvests allows for maximum above-ground carbon sequestration.
Published Riddle of Kondo effect solved in ultimately thin wires



A research team has now directly measured the so-called Kondo effect, which governs the behavior of magnetic atoms surrounded by a sea of electrons: New observations with a scanning tunneling microscope reveal the effect in one-dimensional wires floating on graphene.
Published Template for success: Shaping hard carbon electrodes for next-generation batteries



Sodium- and potassium-ion batteries are promising next-generation alternatives to the ubiquitous lithium-ion batteries (LIBs). However, their energy density still lags behind that of LIBs. To tackle this issue, researchers explored an innovative strategy to turn hard carbon into an excellent negative electrode material. Using inorganic zinc-based compounds as a template during synthesis, they prepared nanostructured hard carbon, which exhibits excellent performance in both alternative batteries.
Published Diverse forests hold huge carbon potential, as long as we cut emissions



New study estimates that natural forest recovery could capture approximately 226 Gigatonnes (Gt) of carbon, but only if we also reduce greenhouse gas emissions. Achieving these results requires community-driven efforts to conserve and restore biodiversity. In brief: Forests have the potential to capture 226 Gigatonnes (Gt) of carbon in areas where they would naturally exist. This forest potential can only be achieved alongside emissions cuts. Sixty-one percent of the forest potential can be achieved by protecting existing forests and allowing them to regrow to maturity. Thirty-nine percent can be achieved by reconnecting fragmented landscapes through community-driven ecosystem restoration and management. A natural diversity of species is needed to maximize the forest carbon potential.
Published Experts predict 'catastrophic ecosystem collapse' of UK forests within the next 50 years if action not taken



Experts predict 'catastrophic ecosystem collapse' of UK forests within the next 50 years if action not taken. Other threats to UK forests include competition with society for water, viral diseases, and extreme weather affecting forest management.